
68 Вестник ВОГиС,  2009,  Том 13,  № 1

DNA – «PROGRAMMING LANGUAGE OF LIFE»

R. Hofestädt 

Bielefeld University, e-mail: hofestae@techfak.uni-bielefeld.de

During the last decades methods of molecular biology are able to identify and sequence different gene 
functional units (DNA-units). Most of these functional units are analysed in syntax (sequence) and semantic 
(metabolic function). This kind of information is represented by different molecular databases and information 
systems, which are distributed across the world (internet). Based on this knowledge it is now possible to 
discuss the old and still open question if DNA can be interpreted as a programming language. In this paper we 
will show that the DNA can be interpreted as a programming language in the sense of computer science. 

Key words: DNA functional units, formal language, programming language, data, control instruction, basic 
instruction, operon, gene regulation, language of life and synthetic biology.

Introduction

Regarding cellular processes two different and 
fundamental levels of genetic languages can be 
identifi ed. The polypeptide level is coded by 20 
different amino acids, which represent the alphabet 
of this formal language, and the polynucleotide level 
represented by different nucleic acids (A,T,G,C 
{U}). The fundamental level is the polynucleotide 
level with it’s DNA, which represents the functional 
units of the metabolism. Therefore, the alphabet 
of the fundamental language is given by X = 
{A,T,G,C (U)} and the DNA is a word over this 
alphabet. Furthermore, specific “programming 
language of life” is L ⊆ X* (where * is the star 
operator and defi nes all words over X). During 
the 60ties Ratner (Ratner, 1977) presented the 
idea of a genetic language that represents different 
levels: codon, cistron, scripton, replicon, segregon 
and genome. This paper will focus on the level of 
functional units of the DNA, which is defi ned by 
Ratners cistron level. The idea of our interpretation 
will be based on two assumptions. The fi rst is that 
for bacteria and virus most of the DNA/RNA-units 
are known today. The second is that most of the 
known DNA-units are universal, which means 
that besides the universality of the genetic code 
the universality of DNA-units, which includes the 
universality of the DNA language, can be suggested. 
Additionally, this paper will show that analyzed 

DNA-units can be interpreted as a programming 
language. We will present this interpretation in 
two steps: 1) the specifi cation of the DNA-units 
in syntax (nucleotide sequence) and semantic 
(function) and 2) the proof that the DNA-units 
represent fundamental mechanisms of a computer 
programming language.

DNA-units

At the beginning we have to discuss the question 
if most of the relevant DNA-units are already 
analyzed. Regarding the sequenced and analyzed 
genomes including latest molecular knowledge we 
can assume:

1. Most of the DNA-units are known (Knippers, 
2006).

2. For most of these units the function is known 
and seems to be universal.

The syntax of the DNA-units can be specifi ed 
using specifi c Chomsky-type-2 grammars as shown 
in (Hofestädt, 2007). Similar to the computer 
programming languages the semantic is described 
informal using the natural language. A list of the 
most relevant DNA-units is shown in Table 1.

Basic features – programming language

Regarding the v. Neumann computer system 
architecture (Burks et al., 1946), which is still the 



69Вестник ВОГиС,  2009,  Том 13,  № 1

Table 1 
Selection of relevant DNA-units (Knippers, 2006)

DNA-unit Comment
Intron sub-sequence of the structure gene
Exon sub-sequence of the structure gene
Leader sub-sequence of specific structure gene
Structure gene input sequence for the protein synthesis process
Spacer separator sequence of genes
Palindrome antidromic DNA sequence
Terminator end of the transcriptional unit
Pribnow-Box subsequence of the promoter to specify promoter affinity
Promoter start point of the transcriptional unit
Operator sequence of the gene regulation process
Regulator specific structure gene
Operon unit of the protein synthesis process
Telomer specific sequence of the end of the chromosome
Origin startpoint of the DNA-Polymerase
Segregon heredity unit 
IS-Element dynamical structure of the genome
Transposon dynamical structure of the genome
Virus-DNA-RNA dynamical structure of the genome
Enhancer controls the promoter affinity
Overlapping gene specific structure gene
Homeotic gene operon, which shows the modularity of the genome

kernel of our computer, we are able to detect the 
following fundamental features of a programming 
language:

F1. Data type (at least one is sufficient): 
Computer instructions can modify data so that 
at least one data type (e. g. integer) must be 
available. 

F2. Instruction: Each computer/computer 
language is offering a set of instructions, which can 
modify data (e. g. add, multiply, and etc.).

F3. Control instruction: Specifi c instruction 
which controls the order of the next executable 
instruction of the program.

F4. Punctuation mark: Begin and end symbol 
(word) is defi ned.

Besides the numeric/logical instructions, 
which will modify the program data, the control 
instructions are fundamental. Regarding all control 
instructions we can differrentiate between three 
fundamental classes:

C1: Composition S1; S2;...; Sn
The semicolon denotes the following operator. 

The semantic of this operator is that instruction (Si+1) 
will be executed after execution of instruction (Si).

C2: If-Instruction (If B then S)
Let S be an instruction and B a condition, which 

can be true/false. Instruction S will be executed if 
and only if condition B is true – otherwise S will 
not be executed. 

C3: While-instruction (While B do S)
Let S be an instruction and B a condition, which 

can represent the value true/false. The meaning is 
that the instruction S will be executed as long as 
B is true. 

The theoretical model of the v. Neumann 
architecture is the so-called Turing machine 
(Hopcroft, Ulman, 1979), which belongs to the 
class of the universal computational concepts. That 
means each problem, which is intuitive computable, 
can be solved using the adequate Turing machine 



70 Вестник ВОГиС,  2009,  Том 13,  № 1

(v. Neumann computer). Regarding the DNA-
units, which are shown in Table 1, we can defi ne 
the basic instruction of the DNA language and the 
activation of this instruction. A DNA-unit is called 
basic instruction, if at least one promoter and one 
terminator are included. If a basic instruction 
will pass the biosynthetic process, this is called 
activation of the basic instruction.

An operon can be interpreted as a basic instruction, 
which includes structure genes, operator genes, one 
or more promoter genes and a terminator gene. The 
activation of a basic instruction includes fundamental 
metabolic processes like transcription and translation 
(Knippers, 2006). It is similar to the instruction 
execution process of a computer system.

Interpretation

Assume that the DNA is the genetic program 
of the cell. In that case the cytoplasm can be 
interpreted as the data type which represents 
metabolites. Metabolites can be modified by 
different biochemical reactions. Therefore, we can 
assume that the data type (metabolite) is available 
(see F1). Enzymes can catalyze biochemical 
substances so that a substrate will be modifi ed 
into a product catalysed by a specifi c enzyme. 
Therefore, instructions are chemical reactions 

caused by enzymes, which are presented by 
structure genes (see F2). Furthermore, structure 
genes are controlling the metabolism indirectly. 
Regarding specifi c cells we can see specifi c genes, 
which are active during specifi c time periods. This 
behaviour shows that specifi c DNA-units control 
the activity of genes, which can be interpreted as the 
control instruction (see F3). Finally, the DNA-unit, 
which is called telomer, can be interpreted as the 
punctuation mark of this system (see F4). Defi ning 
and regarding specific operons it is possible 
to show that the control instructions C1 – C3 
can be simulated by gene controlled regulatory 
networks. Composition of basic instructions can 
be interpreted as a sequence of basic instructions 
represented by structure genes or operons separated 
by spacer units (Fig. 1). 

Furthermore, we can show that an operon can be 
interpreted as an If-instruction (see C2). Therefore, 
we focus on the operon L14 of E. coli, which 
regulates its own synthesis. The mechanism of this 
regulation process can be illustrated (Fig. 2).

Under this interpretation the boolean value of 
condition B will be specifi ed by the state of the 
operator, which can be true (Operator_X gene 
is free) or false (Operator_X is blocked by the 
repressor). Under this interpretation the instruction 
If B then S is simulated, because the operon will 

Fig. 1. Composition of basic instructions of the DNA language.

Fig. 2. Abstract representation of the operon L14 (Knippers, 2006), which can be interpreted as the If-instruction.



71Вестник ВОГиС,  2009,  Том 13,  № 1

be blocked by itself after activation of this basic 
instruction (operon). The synthesis of Structure 
gene S will realise the instruction S and the 
synthesis of Regulator_X will block the synthesis 
of operon L14. Regarding the example of the 
illustrated operon L14 the theoretical extension to 
the While instruction can be realised. Deleting the 
Regulator_X gene, which is inside of the operon 
L14, will produce this effect. Therefore, we will 
discuss the structure and function of the Tryptophan 
operon, which shows this effect (Fig. 3).

Regarding the Tryptophan operon, we can see a 
composition of structure genes (S) and the boolean 
value of condition B can be true (Operator is free) 
or false (Operator is blocked). 

As long as the operon represents the state true the 
basic instruction is activated. It will be activated until 
the operator gene will be blocked. This interpretation 
shows the «While operator» (see C3). Furthermore, 
the telomere sequence (chromosome) and the 
terminator/promoter sequence (cistron level) can be 
interpreted as the begin- and end-mark (F4). 

Features of DNA-languages

Regarding the semantic of the analyzed DNA-
units we can identify the following features of 
this language. First of all the genome is modular 
organized like most of the programming languages. 
The modular organization can be shown regarding 
the semantic of the homeotic genes (Watson et al., 
1985). These genes are controlling a battery of genes 
and can be interpreted as a function, procedure or 
module in the sense of programming languages. 
Regarding the semantic of the promoter we can see 
that the basic element will be activated based on a 
probability value, which is defi ned by the specifi c 
sequence of the promoter sequence. These sequences 
specify the so-called promoter affi nity of the operon 
(Knippers, 2006). One more interesting and complex 

Fig. 3. The Tryptophan operon (Knippers, 2006) represents: Promoter, terminator, operator and a composition of 
structure genes: trpE, trpD, trpC, trpB, trpA.

feature is the dynamic behavior of DNA-units, 
which is shown for example by transposons and 
IS-elements (Watson et al., 1985). The semantic of 
transposons and IS-elements is that DNA sequences 
can change their localization inside the chromosome 
(program). Furthermore, changing the localization 
other DNA-units can be destroyed or modifi ed. 
Until now the semantic of these dynamic DNA-units 
is not known exactly. Parallelization is one more 
feature of molecular processing. The opposite to 
von Neumann computer basic molecular instructions 
can be activated in parallel. This concept is called 
datafl ow concept and the semantic is that each basic 
instruction will be executed if all biochemical 
conditions are satisfi ed (operator genes are free 
and RNA-polymerase is available etc.). Regarding 
these features we can say the programming language 
of life is much more complex than a v. Neumann 
computer language. Regarding theoretical models 
of computation discussed in theoretical computer 
science we can see parallel machines (Fortune, 
Wyllie, 1978), probabilistic Turing machines (Gill, 
1977), and hardware modifi cation machines (Cook, 
1980). However, there is no discussion about a 
dynamic-parallel-probabilistic-modular Turing 
machine model.

Summary

The key idea of this paper is to show that the 
DNA can be interpreted as a programming language 
based on the level of analyzed functional DNA-
units. Therefore, we presented a subset of well-
known DNA-units and extracted the main features 
of a von Neumann programming language. Our 
paper shows that DNA-units can be interpreted 
as a programming language based on the level 
of DNA-units, which was called cistron level 
by the fundamental defi nition of Ratner (Ratner, 
1977). Therefore, metabolites can be interpreted 



72 Вестник ВОГиС,  2009,  Том 13,  № 1

as the fundamental data type and operons which 
synthesize enzymes that can be interpreted as 
data modifying instructions. Specifi c operons can 
also be interpreted to simulate the fundamental 
computer instructions as: composition, If- and 
While-statements. Overall section 4 showed that the 
fundamental structures of a programming language 
are represented by basic DNA-units. Therefore, the 
DNA-units represent the fundamental language of 
life. Further discussions showed that this language 
is representing complex language structures as 
features of parallel, probabilistic, dynamic and 
modular computing. Regarding computational 
models of theoretical computer science we can 
see no model, which represents such a complex 
computational mechanism today.

Thinking about the post-genome era it is the 
main idea of this work to study and understand 
this kind of complex languages (computational 
methods), which we could identify in this paper. 
Based on this work and the understanding of such 
methods and concepts it will be possible to specify 
the language of life in detail, which will represent 
the framework for the realization of the ideas of 
synthetic biology.

References

Burks A., Goldstine H., Neumann von J. Preliminary 
Discussion of the Logical Design of an Electronical 
Computing Instrument // Research Report. Institute 
of Advanced Study, Princeton, 1946.

Cook S. Towards a complexity theory of synchronous 
parallel computation // L’Enseignement Mathematique. 
1980. 27. P. 99–124.

Fortune S., Wyllie J. Parallelism in Random Acess 
Machines // Proc. 10th ACM Symp. on Theory and 
Computing, 1978. P. 114–118.

Gill J. Computational complexity of probabilistic 
Turing Machines // SIAM J. of Computing. 1977. 
6. P. 675–695.

Hofestädt R. Extended Backus-System for the 
representation and specifi cation of the genome // J. 
of Bioinformatics and Computational Biol. 2007. 
5-2(b). P. 457–466.

Hopcroft J.E., Ullman J.D. Automate Theory, Languages, 
and Computation, Addison-Wesley Publ. Co., London 
– Amsterdam Don Mills, Ontario – Sydney 1979.

Knippers R. Molekulare Genetik, Stuttgart; N.Y.: Georg 
Thieme Verlag, 2006.

Ratner V. Molekulargenetische Steuerungssysteme. 
Stuttgart: Gustav Fischer Verlag, 1977.

Watson J.D., Tooze J., Kurtz D. Rekombinierte DNA. 
Spektrum der Wissenschaft, Heidelberg 1985.


