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GENETIC LINKAGE ANALYSIS CHALLENGES 
ON A DISTRIBUTED GRID ENVIRONMENT
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The aim of the present work is to enable the use of high performance computing infrastructures, such as the 
EGEE-III Grid platform for the execution of genetic linkage analysis on very large SNPs (Single Nucleotide 
Polymorphism) markers data sets. The linkage analysis of SNPs has recently become a very popular approach 
for genetic epidemiology and population studies, aiming to discover the genetic correlation in complex 
diseases. It is a statistical method for detecting genetic linkage between disease loci and markers of known 
locations by following their inheritance in families through the generations. This is a NP-hard problem 
and the computational cost and memory requirements of the major algorithms proposed in literature grow 
exponentially with either pedigree size or number of markers. Implementations of the mentioned algorithms 
reflect these limits making analyses of medium/large data sets very hard on a single CPU. A web-based facility 
has been set up upon a high performance infrastructure, the EGEE Grid, in order to enable a tool for achieving 
a whole-genome linkage analysis. Test cases have been performed with 10.000 to 1 million SNPs per Chip. 
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Introduction
 
The haploid human genome is a sequence of 

over 3 billion DNA base pairs and contains an 
estimated twenty to twenty fi ve thousand protein-
coding genes, therefore fi nding the relationships 
between the expression of a particular gene or 
genes and the outbreak of human diseases is a hard 
task. A common approach to this challenge starts 
with the Genetic Linkage Analysis, which is a 
statistical method used to identify the location on a 
chromosome of a given gene involved in a disease, 
relative to a known location of chromosome 
markers. This is obtained by comparing genetic 
data with information on pedigree structure, and 
following the inheritance of phenotypic alterations 
in families through the generations, exploiting 
the tendency for genes and genetic markers to be 
inherited together due to their location near one 
another on the same chromosome. 

Markers used in this analysis are Microsatellites 
(polymorphic loci that consist of repeating units of 
1–6 base pairs in length) and, recently, also Single 
Nucleotide Polymorphisms (SNPs, DNA sequence 
variations involving a single nucleotide). Two major 

algorithms (Lander, Green, 1987; Kruglyak et al., 
1996; Elston, Stewart, 1997) have been proposed for 
the assessment of the genetic linkage, with several 
implementations (Schaffer, 1996; Markianos et 
al., 2001; Fishelson, Geiger, 2002); the problem 
is NP-hard and the computational cost of both 
algorithms grows exponentially for one of the two 
variables of the LOD Score equation, pedigree size 
and number of markers (Table 1). Implementations 
of the mentioned algorithms refl ect these limits 
and the computational time for a medium size 
problem can require several CPU hours and huge 
RAM memory allocation. Therefore the role of high 
performance computing is getting more and more 
relevant in this fi eld and more in general in the fi eld 
of biological and medical scientifi c research, also 
due to the increasing quantity of data produced by 
the high throughput analysis techniques emerging 
nowadays. In this scenario, the use of distributed 
architecture environments can be an appropriate 
solution both from the computational point of view 
and for the data management, but submitting jobs, 
monitoring their status and retrieving the results can 
be challenging when working on a huge quantity 
of data. 
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Objectives 

Actual technologies for chips (for example 
Illumina) provide SNP genotyping arrays, from 
10.000 SNPs to more than 1 million; pedigree fi les, 
that collect the information of the family structure, 
are often large, counting more then 30 individuals. 
Computational time and space on a single CPU is 
unreasonable with these preconditions, therefore 
stands the need for a distributed and high perform-
ance computation infrastructure and a system that 
enables linkage analysis with large datasets. 

The aim of the present work is to enable the use 
of the EGEE Grid Infrastructure for the execution 
of linkage analysis on very large SNPs data sets, 
creating a pipeline for the linkage process. These 
large calculation challenges are launched into 
the Grid infrastructure, distributing the needed 
processes among different computing elements. In 
this context, a user friendly web based access to 
grid resources is provided. This proposed facility 
has been tested with challenges performed with 
markers data collected using the largest chips 
currently available (up to 1M SNPs). 

The сomputational problem 

The Genetic Linkage Analysis method is 
based on the calculation of the LOD score, a test 
parameter defined as the Logarithm Of Odds 
ratio between hypothesis of linkage versus the 
null one. Its computation belongs to the class 
of NP-Hard problems (Piccolboni, Gusfiled, 
1999), thus it has a complexity at least equal to 
the class NP-complete but it could also fall into 
the NP set. So far, approaches and algorithms 
proposed to solve the linkage analysis problem 
(quantitative and qualitative) (Table 1), are very 
computer intensive and the implementations of 

them suffer of hardware limitations. For example 
the Elston-Stewart algorithm, which has been 
adopted by applications such as Linkage, SLink, 
Faslink, Vitesse, grows exponentially for markers 
and linearly for individuals’ parameters, whereas 
the Lander-Green one has an opposite behavior. 
Since we deal with SNP chips and thus with a very 
large number of markers, we adopt the algorithm 
proposed by Lander and Green: in this way we can 
handle a set of about 100 markers each time, but we 
have to monitor the pedigree size variable. 

The computational infrastructure 

The computational infrastructure used to imple-
ment this work is the Grid operated by the European 
Project EGEE (Enabling Grids for E-sciencE, 
Phase III) for the European scientifi c and research 
communities with more than 240 sites worldwide, 
providing access to more than 50.000 CPUs. It 
consists of a collection of computers, storages, 
special devices and services that are heterogene-
ous in every aspect, geographically distributed and 
dynamically linked by a wide-area network which 
can be accessed on-demand by a set of users with 
appropriate authentication and authorization. The 
Grid was originally invented as a practical solution 
to the problems of storing and processing the large 
quantities of data that are going to be produced 
by CERN’s Large Hadron Collider (LHC). This 
computational facility can be seen as a service for 
sharing computer power and data storage capacity 
over the Internet, going beyond simple communica-
tion between computers, and aiming ultimately to 
turn the global network of computers into one vast 
computational resource. In this scenario, this infra-
structure enables data sharing between thousands 
of scientists with multiple interests, tries to ensures 
that all data is accessible anywhere, anytime and 

Table 1  
Main algorithms characteristics

Algorithms Applications Computational 
bounds

Increasing computational time by
individuals loci time

Elston-Stewart Linkage, SLink, Fastlink, 
Vitesse n° loci: ~8 linear exponential O((m2n)p)

Lander-Green GeneHunter, Allegro, Merlin n° loci: > 20 exponential linear O(m24p)
Bayesian Networks Superlink n° loci: nr linear linear nr
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copes with different computer centers access poli-
cies, ensuring data security.

The EGEE Grid infrastructure runs upon a 
set of middleware services called gLite, which 
is integrated, certified and distributed by the 
project itself and world-widely deployed on the 
computational resources. The services available 
in the gLite distribution can be broadly classifi ed 
into two categories: the Grid Foundation Mid-
dleware, covering the security of the infrastruc-
ture, the information, monitoring and accounting 
systems and the access to computing and storage 
resources; the other is a higher-level Grid Mid-
dleware, including services for job management, 
data catalogs and data replication, providing ap-
plications with end-to-end solutions. In order to 
use this infrastructure a personal authentication 
certifi cate is required. The certifi cate is released 
by a Certifi cation Authority and associated to a 
Virtual Organization, a geographically independ-
ent group of collaborating scientists; the access 
to computational resources is executed through 
dedicated User Interfaces running the gLite mid-
dleware and its CLI commands.

The tests for the correctness of the linkage analy-
sis algorithm and for the evaluation of its perform-
ances were performed on the computation cluster 
Michelangelo provided by the LITBIO project and 
is composed of 70 nodes, and 18.5TB of redundant 
storage. Each node is composed of two 275 dual-core 
AMD Opteron CPUs (total of 4 cores) and 8GB ram; 
all the nodes are connected via 10 Gbit/sec Infi ni-
band for maximum scalability of the algorithms.

Methods 

The system is designed in 3 different layers, 
as schematized in Fig. 1. The presentation layer 
shows a web based user interface which has been 
created to aid users to setup linkage challenges and 
to mask the complexity of low level interactions 
with the Grid middleware. The web page makes 
use of javascript as client side scripting language 
to increase interactivity and user friendliness, us-
ing asynchronous communications with back end 
PHP server pages to manage information exchange 
with the application layer and input fi le uploads. 
Through the web interface users can:

Fig. 1. Diagram of system’s design. 
In the presentation layer users interact with the application which produces an XML fi le; the application layer parses the XML 
fi le to extract the logics of execution and linkage parameters; in the fi nal step the HPC layer interacts with the Grid middleware 
submitting jobs and monitoring their execution.
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– Create the data pipeline using draggable 
modules that represent each operative step: the 
arrangement of logical blocks, managed by cli-
ent-side scripting, makes building the data fl ow, 
from the input fi les to the outputs retrieving, a 
visual matter.

– Customize each step: choose and upload the 
input fi les, defi ne optional data pre-processing to 
adapt inputs to different algorithms requirements, 
select one of the available algorithms and set the 
proper parameters.

– Launch the analysis and monitor the jobs’ 
state, retrieve and download the results once the 
challenge is complete.

The communication between the Presentation and 
the Application Layers is obtained through the crea-
tion of an XML fi le that describes the data pipeline 
and all its parameters: this fi le provides a complete 
description of the challenge characteristics making 
possible successive quick resubmissions; the choice 
of XML language refl ects the future possibility of the 
system to drift to web services technology, adapting 
the Application Layer to this protocol with a minor 
effort. The communication in the opposite direction, 
between the Application and the Presentation Layer, 
is obtained with asynchronous data exchanges polled 
by client scripts that request information to the server 
backend and display the available ones without the 
need of page reloads.

In the application layer the system fi rst parses 
the XML fi le created by the presentation layer, then 
executes pre-processing operations (error detec-
tion, etc) and fi nally runs the workfl ow on the HPC 
layer, monitoring its status: real time information 
on jobs status is returned through the interface to 
the user. Preprocessing operations are related to 
select the correct SNPs from our genotype database, 
then formatting fi les splitting SNP markers on the 
basis of the parameters reported in the XML fi le, 
such as distance between two consecutive mark-
ers or interval in kilo-bases (nucleotides, DNA 
measure), and so forth. The last activity in this 
phase is the creation of execution fi les for the HPC 
infrastructure according to the setting specifi ed by 
user. Once fi les have been created the challenge 
execution can begin and the monitoring process, 
which is demanded to the VNAS component of the 
HPC Layer, is activated. When each single job has 
fi nished its computation, all results are merged into 
a single CSV fi le, that is easily readable by biolo-

gists or domain experts, and a fi nal global plot for 
each chromosome is created.

In the HPC layer, the submission engine splits 
the workload into small jobs and distributes analysis 
tasks over the available resources. This is achieved 
by a software layer, called VNAS (Trombetti, 2007), 
built on top of the grid middleware which monitors 
each single grid process and ensures the success of its 
computation by managing the resubmission of failed 
jobs automatically. When all tasks are computed the 
results are retrieved, merged and made available for 
downloading through the web interface.

The VNAS framework is an advanced system 
for the submission and monitoring of jobs onto the 
Grid environment. VNAS has integrated strategies 
for the detection of failures and hang-ups of Grid 
jobs and can perform automatic resubmission for 
jobs detected in such conditions. VNAS hence 
provides an abstraction with reliability over the 
Grid platform which signifi cantly eases the task of 
developing new applications for the Grid. VNAS 
also signifi cantly simplifi es the development of 
certain complex Grid workfl ows by providing a 
callback system that eases the creation of arbitrarily 
complex multi-stage computational applications. 
In addition, VNAS provides an abstracted virtual 
sandbox which bypasses certain Grid limitations 
such as the maximum sandbox size, while simul-
taneously reducing the usage of Grid bandwidth 
and storage resources. The latter is achieved by 
transparently detecting equality of virtual sandbox 
fi les based on content, across different submissions, 
even when performed by different users, and by 
performing automatic garbage collection of fi les 
after N days of no-use.

The VNAS framework has been used in various 
projects including the present one, to raise the reli-
ability and reduce the development time for new 
Grid applications and pipelines being developed. 

Results

Tests were run to evaluate both effi ciency on 
computational time and functionality of the pro-
posed approach, obtaining an estimate of the Grid 
performances in comparison to a single 2 GHz 
CPU workstation and to the Michelangelo cluster 
composed by 280 CPU cores. The test, run us-
ing the Genehunter software, involved analysis 
of pedigrees composed by 25 subjects, including 
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individuals genotyped with different genotyping 
chips of markers from 10k up to 1 million of SNPs 
each. Considering the trade off between CPU load 
and memory requirements, a data subset of 50 
SNPs was evaluated as the optimal workload for a 
Grid node and was assigned to each program run; 
the total number of runs needed to process all SNP 
data produced by each genotyping chip was split 
into jobs with an estimated duration of around 6 
hours on a mid-range multicore CPU. Test results 
are summarized as follows: Table 2 shows the dura-
tion of the challenges in hours and Fig. 2 displays 
the relative plot. 

Comparing the results of different computa-
tion infrastructures we can see that distributed 
analysis pipelines with number of data (linkage 
variables) close to the computational limits for a 
mid-range workstation achieved improvements of 
about 65–70 % in computational time compared to 
dual-core 2 GHz CPU execution and considering 
markers chips greater than 100 k, the advantage 
of the distributed architecture gets proportion-
ally bigger, due to the difference between linear 
increase of computational time for the sequential 
run on the single CPU and the saturation trend of 
the parallelized data fl ow obtained distributing the 
workload on the Grid’s computing elements. It must 
also be highlighted that computations with a higher 
number of individuals in the pedigree tree, were 
still performed on the distributed infrastructure, 
but resulted infeasible on the desktop workstation 

due to memory overfl ow. The tests also show that 
the average performance of the proposed system 
can’t compete with a cluster environment in terms 
of pure computing time, even if it shows a compa-
rable trend due to the similar workload distribution 
technique adopted (not MPI).

Conclusions 

This application enables the user to launch 
genetic linkage analysis computations for medium 
to large challenges over a distributed computa-

Table 2 
Duration of the challenges. Test results

Genotyping chip 
(# of SNPs) Runs (50 SNP) Jobs (6 h)

Computational cost (hours)
single 

2GHz CPU
cluster (70 nodes 
280 CPU Cores) grid

10 k 200 6 33 8 53
66 k 1320 35 220 9.5 64
100 k 2000 60 333 10 75
317 k 6340 172 1056 13 115
370 k 7400 206 1233 15 120
500 k 10000 278 1665 16 122
670 k 13400 373 2233 18 122
1 M 20000 556 3332 20 170

Notes. Data derived from different genotyping chips were analyzed with the Genehunter software using 3 computational 
infrastructures: our Grid-based system, a 280 cores Cluster and a single 2GHz CPU Workstation. The left side columns show 
the challenges characteristics, on the right the challenges durations expressed in hours as resulted for different environments.

Fig. 2. Graph of the test results. 
The computation effi ciency of the distributed approach of 
our Grid-based system grows with the size of the challenge, 
being lower than a dedicated Cluster’s but much higher than 
a sequential run on a single processor unit.
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tional infrastructure such as the EGEE Grid. The 
application offers an interface to customize the 
data pipeline and achieve, through the submission 
engine, the parallel processing of the pipeline 
tasks on the distributed resources. The low-level 
interactions with the Grid environment are man-
aged with a reliable software layer that hides any 
complexity for the fi nal user, allowing monitoring 
and results retrieving to be easily managed with 
the web interface. Tests made on the proposed 
system showed that this approach is mostly useful 
in high-end challenges, where Grid overheads are 
affecting overall execution times less compared to 
single CPU performances; only very small chal-
lenges may show higher effi ciency when run in a 
single CPU workstation, while very large analyses 
are made accessible even without a dedicated 
cluster, resulting as a good and affordable solution 
when considering the cost-benefi t ratio of the two 
infrastructures.
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