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One of the biological issues aiming at understanding bovine embryo development implies the analysis 
of proliferation and differentiation processes. Using published data from model species (mouse, human) 
we used a double-step classical clustering approach. First step runs a k-mean clustering for each chip 
individually. Second step runs a fuzzy consensus clustering to merge a few clusters (i.e. megaclusters) 
between microarrays. Hence we make temporal gene profiles using the symbolic time property of simultaneity 
and precedence according expression in ensemble of clusters. Finally with the help of a Jaccard coefficient 
between temporal gene profiles across species, we extract a list of genes revealing a similarity with a target 
gene of interest. Depending on the species and on the target gene, this list of genes differed in size and 
content, thus highlighting the interest of such cross-species comparisons to gain insights from different 
literature contexts.
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Motivation and Aim

Large-scale biological experiments such as 
microarrays are now available and require data 
analysis to process huge amounts of results (Eisen 
et al., 1998). One of the purposes when studying 
not well-know species is to refer to model-species. 
In our case we aimed at understanding bovine em-
bryo development (Hue et al., 2007) and analysed 
at fi rst genes related to proliferation processes. 
Since embryo development and proliferation pro-
cesses have been well studied in mouse and human 
species, we based our study on the comparison of 
published data sets in these three species. How-
ever, selecting temporal series for each species, it 
appeared that each dataset referred to a different 
time scale (detailed in datasets). Hence, comparing 
different sets of sequential time-series data could 
be done through alignment as largely done with 
DNA sequences since a few decades (Smith et al., 
1981; Altschul et al., 1990) and even improved now 
(Kucherov et al., 2004). For gene expression data 
the multidimensional property has not been handled 
so far since the classical way to align microarray 

datasets deals with curves of univariate time-series 
(Aach, Church, 2001; Ernst et al., 2005). Neverthe-
less, this cannot be adapted to our purpose since 
curves can be deformed if they are compressed 
in a short-time duration. Lots of combinations 
are available, among which the Dobinski formula

Bn= 1
e ∑

k= 0

∞ k n

k ! that gives the number of all parti-

tions of a set of n objects. For n = 26, this formula 
gives 1,6·1021 combinations. With a 2Ghz clock, 
and approximating 1 cycle for a partition, time 
processing is about 800 years. To solve this, our 
approach consists in aligning only some parts of 
the microarrays, thus restricting the space of the 
alignments. We fi rst used a classical clustering ap-
proach on each dataset and merged a few clusters by 
consensus to study gene interactions around genes 
of interest while using symbolic time property of 
simultaneity and precedence as described in Turenne 
and Schwer, 2008. Our project through microarray 
alignment was also to cross this kind of relational 
(temporal) information with known relational in-
formation from the literature or database softwares 
(IPA, PubMed, Gene Ontology for example). Two 
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corpora (document databases, PubMed) about mouse 
and human species have been designed and lists of 
gene names have been extracted from commercial 
software (IPA) and both corpora.

Datasets

We compared pairwise Bovine microarray 
data with Human and Mouse microarray data. 
Bovine embryos on days 7, 14 and 19/20/21, extra-
embryonic membranes on days 27/28 and fetuses on 
days 27/28 were collected to represent early embryo, 
elongating embryo, pre-implantation embryo, 
post-implantation extra-embryonic membrane and 
fetus, respectively (hence it covers 7 time-points). 
In total, the processed microarray contains 4,607 
cDNA covering about 2,000 unique genes (GSE 
1414) and call hereafter this chip: BiopB (Ushizawa, 
2004). Dataset of murine embryonic developmental 
time course consists of morphologically staged 
samples from E6.25 to E9.0 (at approximately 
0,25 day intervals, hence it covers 11 time points). 
In total, the processed microarray contains 43,000 
cDNA covering 12,000 unique genes (GSE 9046) 
hereafter we call this chip: BiopM (Mitiku, Baker, 
2007). Human embryonic stem cells were treated in 
pairs with or without BMP4. This was followed by 
RNA extraction and amplifi cation and microarray 
analysis on DNA chips containing 43,000 cDNA 
clones, which represented about 25,000 unique 

genes. Samples have been extracted at time 3hrs, 
6hrs, 12hrs, 24hrs, 48hrs, 3days, 7days (GSE 3553), 
hence it covers 7 time points. Hereafter we called 
this chip: BiopH (Xu et al., 2002).

Method and Algorithm

Our method is currently developed under R 
tool and we used Clue library (method DWH) 
for clustering consensus (Hornik, 2005). The fi rst 
step of the methodology relies on gene clustering 
for each microarray. This part could be done by 
k-means or descendant agglomerative hierarchy 
using an Euclidian distance for similarity. We 
obtained clusters of resembling genes through 
resembling expression profi les. At the second stage 
we merged clusters from each microarray in a way 
explained by Mirkin and Cherny (1970) or Meila 
(2005). A megacluster is a set of clusters (resulting 
from consensus clustering) assigned to a specifi c 
gene. A consensus distance was used for merging 
two partitions. The size of a partition is a vector of 
unique objects to classify (i.e. genes). For instance 
12 items are clustered leading to a partition P1 and 
a partition P2. In Partition P1 the 6 fi rst items belong 
to the fi rst microarray, the 6 following ones to the 
second microarray as illustrated in Table 1. Let us 
suppose that the fi rst item belongs to cluster 1 (in 
P1) and cluster 16 (in P2). Because of this item the 
clusters 1 and 16 merged in the resulting partition.

Table 1 
Example of consensus result 

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene10 Gene11 Gene12
P1 1 1 1 2 2 2 3 4 5 6 7 8
P2 16 10 11 12 13 14 15 15 15 16 16 16
Consensus 1 1 1 2 2 2 3 3 3 1 1 1

Notes. Values represent indices of clusters.

From this example we see that gene 3 belongs 
to cluster 1 but as cluster 1 is merged with cluster 
16, a megacluster for gene 3 will be (cluster 
1, cluster 16). Hence for a target gene we can 
identify to which megacluster it belongs and 

assess a time correlation matrix across both 
microarrays. Indeed, as we see below, if a cluster 
C1 belongs to P1 and C2 belongs to P2, without 
intersection, three possibilities are possible and 
all of them are:
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Through megaclusters we can more easily com-
bine using now measurement of a partition (i.e. P1 
as above for instance). Hence we can compute a 
time correlation matrix according to the preceding 
and use the symbol B for before, A for after and D 
if a current megacluster has a measurement greater 

Above, Table 2(a) shows an example of 
time correlation matrix for a target gene and its 
megacluster (1,16) and activation measurement; 
Table 2(b) gives the final resulting matrix for 
activation state (p), and should be completed by 
inhibition state (m). We use a Jaccard similarity 
index to compare the sub-matrix corresponding 
to a gene and the sub-matrix corresponding to 
the target gene and decide whether two genes are 
close to each other in their temporal profi les. These 
are the main steps of the algorithm in two stages. 
First stage is a preprocessing of data. Second stage 
applies consensus (Table 3).

Table 2 
Time correlation matrix for a target gene

(a) Cluster Target gene T1(P1) T2(P1) T3(P1) T4(P1) T1(P2) T2(P2) T3(P2)
1 3 AD ABD BD 0 0 0 0
16 3 0 A D B A D 0

(b) State Target gene T1(P1) T2(P1) T3(P1) T4(P1) T1(P2) T2(P2) T3(P2)
P 3 AD ABD BD B A D 0

Results

Complexity of consensus approach from CLUE 
library is O (n x k) in memory and O (n x k3) in 
time but the DHW use an optimization solver is 
found on Hungarian algorithm and takes O (n2) 
in space. We used a multiprocessor cluster of 162 
nodes running under Sun Grid Engine, each node 
having 4 processors exploiting between 4 Gb and 8 
Gb each one (processor Xeon EMT 64 3,2 Ghz / 4 
Go; processor WoodCrest 2,33 Ghz / 8 Go). A job is 
assigned to the most available node. On the cluster 
a selection of 30 % of BiopM or BiopH microarray 

In our alignment method, through megaclusters, 
as shown below with M1, M2, a cluster M2 can be 
compared to M1 for a given time point t (of P1 in 

this case). Let q1(t) (resp. q2) be the measurement 
of a megacluster at time t for partition P1 (resp. P2) 
and S and a threshold of level expression.

than a target megacluster. We can compute the time 
occurrence of a given Gene at a given time point 
compared to next or previous time point knowing 
the level expression (measurement) of either activa-
tion (state p), either inhibition (state m) of clusters 
in which it is supposed to belong, as: 
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Table 3 
Stage 1 (left), Stage 2 of Microarray Alignment algorithm

Input: Two microarray datasets (D) (ma-
trix with in column time-points), 
a measurement threshold (M)

1 – implement a classical k-means 
clustering on 2 Datasets (D) adding 
a column of unique cluster index

2 – delete measurement values < M
Output: D cleaned with a column point-

ing to a cluster index for each 
gene.

Input: Datasets (D), a Given Gene (G), a threshold of expression level 
(S), a threshold of temporal similarity (Js) 

1 – Compute mean expression values for clusters
2 – Create Gene Dictionary D
3 – Create 2 Partitions of Gene Dictionary with Clusters for D
4 – Apply consensus to obtain a unique partition P
5 – Create a Mapping MegaCluster ↔ clusters (MGC) using P
6 – Generate the Temporal Matrix (TM) for all clusters
7 – Compute a submatrix of TM for G (TMG) using MGC (as in 

Table 2. (b) )
8 – For each gene g of D

– compute submatrix (TMg) using MGC according to 
expressions in (3)

– compute Jaccard value J between TMG and TMg
Output: List of Genes Temporally Similar to G having J > Js

size and overall of BiopB lead to memory limit of 
computation: 8 Gb of computation to manage a 
unique gene partition out of 9000 genes and 5 hours 
(40 minutes for consensus). We have tested the new 
method presented in the chapter below, running 
it on data described in chapter Datasets. We thus 
observed that (i) each target gene has a different 
context in each array dataset (ii) this context varies 
depending on the similarity threshold or megacluster 
size and (iii) the use of temporal gene profi les based 
on a symbolic time property of simultaneity and 
precedence identifi es target gene contexts which 
might be of high interest (Table 4).

By studying these contexts with the IPA 
software, we found similar gene networks around the 
alg5 target gene with the bovine-human and bovine-
mouse megaclusters whereas those surrounding the 
eif2s3 target gene were rather different (Table 5). 
At fi rst glance, these networks make sense with 

Table 4 
Gene contexts identifi ed with our combinatorial approach 

(Tb is threshold for Bovine, T is threshold for the other microarray)

Target 
genes

Similarity 
threshold

Bovine (B) & Human (H) arrays Bovine (B) & Murine (M) arrays
megacluster 
(# cluster )

B & H 
genes B genes H genes megacluster 

(# cluster )
B & M 
genes B genes M genes

alg5
Tb=0,7; T=0,9 16 14 18 0 12 25 43 37
Tb=0,7; T=0,1 11 14 18 0 15 12 20 0

eif2s3
Tb=0,7; T=0,9 16 12 10 0 15 208 298 2265
Tb=0,7; T=0,1 10 76 81 574 5 6 16 0

those identifi ed as important in embryos from 
cows or from other ungulates such as sheep or pig 
(recently reviewed in Blomberg, 2008). We thus 
feel confi dent that this approach is interesting to 
pursue. Whether these gene contexts make sense 
at certain stages more than others along the GSE 
time-series analysed here, in the understanding 
of the proliferation and differentiation processes 
involved in bovine embryo development, clearly 
awaits further studies.

Conclusion

Using published microarray datasets and com-
paring two time series from two different species, 
we addressed a question for correlation between 
time-points and gene comparison across microar-
rays where time was neither equivalent nor linear 
between species. All combinations of occurrence 
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Table 5 
Gene contexts identifi ed with our combinatorial approach and analysed with the IPA software. 

The highest scores indicate the more signifi cant functions (or top functions) identifi ed in these gene contexts

Genes Networks Score
Alg5 bov hum =
Alg5 bov mus

Connective tissue disorders, genetic disorders, cancer 22
Cancer, cell to cell signalling and interaction, cellular assembly and organisation 14

Eif2s3 bov hum Molecular transport, organ morphology, reproductive system development and 
function 24

Eif2s3 bov mus

Reproductive system disease, cardiovascular system development and function, 
organismal development 46

Cancer, cell to cell signalling and interaction, cellular function and maintenance 22
Cell cycle, cellular assembly and organisation, DNA replication, recombination 
and repair 22

Cell cycle, cell morphology, connective tissue development and function 18
Post-translational modification, protein folding, cancer 11

of genes between time points are possible, hence 
all partitions. We propose a methodology based on 
merged clusters and use a time correlation matrix to 
compute a time profi le over two microarrays. This 
kind of combinatorial-mining approach could be a 
fi rst step to multidimensional sequence alignment 
which seems close to known 1-dimension sequence 
alignment but is more highly combinatorial.
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