ПРИЛОЖЕНИЯ

к статье Е.Г. Комышева, М.А. Генаева, И.Д. Бусова, М.В. Кожекина, Н.В. Артеменко, А.Ю. Глаголевой, В.С. Коваля, Д.А. Афонникова «Определение содержания меланина и антоцианов в зернах ячменя на основе анализа цифровых изображений методами машинного обучения»

Приложения 1 и 2 содержат характеристики образцов ячменя: название, содержание меланинов, антоцианов, пленчатость/голозерность. Дополнительно отмечены голубозерные и фиолетовозерные образцы там, где это было возможно, поскольку для образцов, которые одновременно накапливают антоцианы и меланин, такая характеризация затруднительна. В анализе цвет антоцианов не учитывался.

Приложение 1. Образцы с темной окраской оболочек зерна и с неокрашенным зерном	Л
для обучающей и тестовой выборки	

Образец	Название образца	Меланины	Антоцианы	Пленчатый/голозерный
1	OWB-Rec	Нет	Нет	Голозерный
2	BLP-h (ICG)	Да	Нет	Пленчатый
3	BLP-n (ICG)	Да	Нет	Голозерный
4	Bowman (ICG)	Нет	Нет	Пленчатый
5	BA (ICG)	Нет	Да (голубой)	Голозерный
6	PLP (ICG)	Нет	Да (фиолетовый)	Пленчатый
7	OWB18	Да	Да	Голозерный
8	gBLP (ICG)	Да	Нет	Пленчатый
9	Purple Black (ICG)	Да	Да (фиолетовый)	Пленчатый
10	OWB1	Да	Да	Пленчатый
11	OWB5	Да	Да	Голозерный
12	OWB7	Да	Да	Пленчатый
13	OWB8	Нет	Да (голубой)	Голозерный
14	OWB17	Нет	Да (фиолетовый)	Голозерный
15	OWB20	Нет	Да (фиолетовый)	Пленчатый
16	OWB36	Да	Да	Пленчатый
17	OWB39	Нет	Да (фиолетовый)	Пленчатый
18	OWB49	Нет	Да (голубой)	Пленчатый
19	OWB53	Нет	Да (фиолетовый)	Голозерный
20	OWB59	Нет	Да (фиолетовый)	Голозерный
21	OWB62	Да	Да	Пленчатый
22	OWB64	Да	Нет	Пленчатый
23	OWB69	Да	Нет	Пленчатый
24	OWB85	Нет	Да (голубой)	Пленчатый
25	OWB90	Нет	Да (фиолетовый)	Пленчатый
26	OWB91	Да	Да	Голозерный
27	OWB93	Нет	Да (голубой)	Пленчатый
28	k-5144 (VIR)	Да	Нет	Пленчатый
29	k-5445 (VIR)	Да	Нет	Пленчатый
30	k-5447 (VIR)	Да	Нет	Пленчатый
31	k-20040 (VIR)	Да	Нет	Голозерный
32	k-20048 (VIR)	Да	Нет	Голозерный
33	k-23441 (VIR)	Да	Нет	Пленчатый
34	k-3502 (VIR)	Да	Нет	Пленчатый
35	k-12265 (VIR)	Да	Нет	Пленчатый
36	k-15151 (VIR)	Да	Нет	Пленчатый
37	k-31075 (VIR)	Да	Нет	Голозерный
38	k-23378 (VIR)	Да	Нет	Голозерный
39	k-23306 (VIR)	Да	Нет	Пленчатый
40	k-30675 (VIR)	Да	Нет	Голозерный
41	k-30676 (VIR)	Да	Нет	Пленчатый

Окончание приложения 1

Образец	Название образца	Меланины	Антоцианы	Пленчатый/голозерный
Wh_1	OWB2	Нет	Нет	Голозерный
Wh_2	OWB13	Нет	Нет	Пленчатый
Wh_3	OWB26	Нет	Нет	Пленчатый
Wh_4	OWB45	Нет	Нет	Голозерный
Wh_5	OWB82	Нет	Нет	Голозерный
Wh_6	k-13273 (VIR)	Нет	Нет	Голозерный
Wh_7	k-17527 (VIR)	Нет	Нет	Пленчатый
Wh_8	k-17805 (VIR)	Нет	Нет	Пленчатый
Wh_9	k-26321 (VIR)	Нет	Нет	Пленчатый
Wh_10	Stepnoe (ICG)	Нет	Нет	Пленчатый
Wh_11	Grace (ICG)	Нет	Нет	Пленчатый
Wh_12	Подарок Сибири (ICG)	Нет	Нет	Пленчатый
Wh_13	Московский 121 (ICG)	Нет	Нет	Пленчатый
Wh_14	Светик (ICG)	Нет	Нет	Пленчатый
Wh_15	Рейд (ICG)	Нет	Нет	Пленчатый
Wh_16	Золотник (ICG)	Нет	Нет	Пленчатый
Wh_17	Липень (ICG)	Нет	Нет	Пленчатый
Wh_18	Винер (ICG)	Нет	Нет	Пленчатый
Wh_19	Танай (ICG)	Нет	Нет	Пленчатый
Wh_20	Golden Promise (ICG)	Нет	Нет	Пленчатый
Wh_21	AL (ICG)	Нет	Нет	Пленчатый
Wh_22	Keystone (ICG)	Нет	Нет	Пленчатый
Wh_23	Биом (ICG)	Нет	Нет	Пленчатый
Wh_24	Лунь (ICG)	Нет	Нет	Пленчатый
Wh_25	Омский голозерный 2 (ICG)	Нет	Нет	Голозерный
Wh_26	Сигнал (ICG)	Нет	Нет	Пленчатый
Wh_27	Новосибирский 80 (ICG)	Нет	Нет	Пленчатый
Wh_28	Колчан (ICG)	Нет	Нет	Пленчатый
Wh_29	Арчекас (ICG)	Нет	Нет	Голозерный
Wh_30	Соболек (ICG)	Нет	Нет	Пленчатый
Wh_31	Л-421 (ICG)	Нет	Нет	Пленчатый
Wh_32	Morex (ICG)	Нет	Нет	Пленчатый
Wh_33	Белогорский (ICG)	Нет	Нет	Пленчатый
Wh_34	Дагестанский (ICG)	Нет	Нет	Пленчатый
Wh_35	Красноярский 1 (ICG)	Нет	Нет	Пленчатый
Wh_36	Талан (ICG)	Нет	Нет	Пленчатый
Wh_37	Алей (ICG)	Нет	Нет	Пленчатый
Wh_38	Импульс (ICG)	Нет	Нет	Пленчатый

Образец Название образца Меланины Антоцианы Голозерность/ пленчатость 60 k-3282 (VIR) Дa Нет Голозерный 67 k-17384 (VIR) Дa Дa Пленчатый 68 k-17554 (VIR) Дa Дa Голозерный 69 k-18830 (VIR) Дa Нет Пленчатый 75 k-20024 (VIR) Дa Нет Пленчатый 76 k-20028 (VIR) Нет Да (голубой) Голозерный 85 Да (голубой) k-20079 (VIR) Нет Голозерный 105 k-3477 (VIR) Дa Дa Голозерный 110 k-15160 (VIR) Нет Дa Пленчатый Дa 118 k-19068 (VIR) Дa Пленчатый 122 k-25872 (VIR) Дa Дa Голозерный 124 k-26750 (VIR) Дa Нет Пленчатый Нет Дa Пленчатый 161 k-26311 (VIR) 162 k-11356 (VIR) Дa Нет Пленчатый 174 k-22591 (VIR) Нет Да (фиолетовый) Голозерный 181 k-26105 (VIR) Дa Дa Пленчатый 185 Нет Нет k-22603 (VIR) Пленчатый 196 k-3302 (VIR) Дa Дa Пленчатый 197 k-13241 (VIR) Дa Нет Пленчатый 200 k-176 (VIR) Дa Нет Пленчатый 201 k-1067 (VIR) Дa Дa Пленчатый Wh 31 Л-421 (ICG) Нет Нет Пленчатый Wh_32 Morex (ICG) Нет Нет Пленчатый Wh_33 Белогорский (ICG) Нет Пленчатый Нет Wh_34 Дагестанский (ICG) Нет Нет Пленчатый Wh_35 Красноярский (ICG) Нет Нет Пленчатый Wh 36 Талан (ICG) Нет Нет Пленчатый Wh_37 Алей (ICG) Нет Нет Пленчатый Wh_38 Нет Импульс Нет Пленчатый

Приложение 2. Образцы с различными комбинациями пигментов в зерне, представленные в отложенной выборке

Приложение 3. Процесс получения изображений зерен ячменя по предложенному протоколу

Приложение 4. Пример изображения образца с нанесенной вручную разметкой зерен (красным) и границ чашки Петри (зеленым). Для обучения модели сегментации использовалась разметка области зерен (красным).

5

Приложение 5. Описание процедуры стратификации данных

Для полученных изображения была использована стратификация по образцам: все изображения одного образца всегда находились в одной подвыборке. Для сбалансированности распределения мультиклассов в каждой подвыборке был использован алгоритм итеративной стратификации, реализованный в методе iterative_train_test_split() модуля model_selection python библиотеки skmultilearn (Szymański, Kajdanowicz, 2017). Данные о разбиении образцов на подвыборки представлены ниже в двух таблицах.

Распределение образцов по обучающей, валидационной, тестовой и отложенной выборкам

Выборка	Образцы, попавшие в выборку
Обучающая	32, 24, Wh_10, 28, Wh_25, 35, Wh_29, 41, Wh_07, 21, 17, Wh_26, Wh_06, Wh_17, 27, Wh_14, Wh_32, Wh_24, Wh_04, Wh_21, 34, 05, 04, 15, Wh_36, Wh_08, 01, Wh_03, 14, Wh_02, 22, 40, 39, 30, 02, 07, 26, 20, 38, Wh_28, 36, Wh_35, Wh_33, Wh_09, 10, 25, Wh_34
Валидационная	09, Wh_27, 29, 19, Wh_20, Wh_05, 37, 16, Wh_22, Wh_19, Wh_23, Wh_38, 18, 03, 08, Wh_18
Тестовая	Wh_37, 06, 23, Wh_11, Wh_01, 11, Wh_15, Wh_13, 13, 31, 12, 33, Wh_16, Wh_31, Wh_30, Wh_12

Распределение образцов по обучающей, валидационной, тестовой и отложенной выборкам в процентном соотношении относительно основной выборки

Обучающая	Валидационная	Тестовая	Отложенная	Параметр
47 (60 %)	16 (20 %)	16 (20 %)	29	Количество образцов
26 (63 %)	8 (20 %)	7 (17 %)	20	Количество образцов с пигментом
21 (55 %)	8 (21 %)	9 (24 %)	9	Количество образцов без пигментов
17 (61 %)	6 (21 %)	5 (18 %)	16	Количество образцов с меланином
12 (60 %)	4 (20 %)	4 (20 %)	12	Количество образцов с антоцианами
5 (56 %)	2 (22 %)	2 (22 %)	8	Количество образцов с меланинами и антоцианами

Приложение 6

Извлечение цветовых дескрипторов из масок зерен

Для описания цветовых характеристик зерен мы использовали представление цвета в виде четырех моделей: RGB, HSV, Lab, YCrCb (Gowda, Yuan, 2018; Комышев и др., 2020). Каждая из них представляет цвет в виде трех компонент. Значения компонент одного пространства могут быть получены путем преобразований значений компонент другого. Цветовые дескрипторы вычислялись независимо для каждой из этих компонент.

Первый тип дескрипторов: средние значения интенсивности компоненты для пикселей отдельного зерна. Для этого изначально вычисляли обычный средний цвет пикселей. Далее вычисляли среднеквадратическое отклонение компоненты и отбрасывали пиксели, значение компоненты которых отклонялось более чем на три среднеквадратических отклонения. Для оставшихся пикселей вновь вычисляли среднее значение компоненты, которое использовали далее.

Следующий тип цветовых характеристик – глобальная цветовая гистограмма. Она оценивается путем разбиения трехмерного цветового пространства на трехмерные бины, размер которых одинаков и определяется числом бинов на компоненту, *d*. В итоге получается общее количество d^3 бинов. Каждый бин определяется индексами (*i*, *j*, *k* = 1, ..., *d*), соответствующими трем компонентам, и интервалами интенсивности по каждой компоненте в пределах (*i*×*b_i*, (*i*+1)×*b_i*; *j*×*b_j*, (*j*+1)×*b_j*; *k*×*b_k*, (*k*+1)×*b_k*), где *b_c* – это размер бина по компоненте *c*. Мы использовали два типа гистограмм с *d* = 4 (всего 64 дескриптора) и *d* = 8 (всего 512 дескрипторов). Значение каждого бина соответствует числу пикселей зерна, попадающих в диапазоны интенсивностей по компонентам.

Дескриптор доминантных цветов

Дескриптор доминантных цветов обеспечивает компактное описание репрезентативных цветов на изображении или области изображения (Cieplinski, 2001).

Дескриптор определяется как

$$F = \{\{c_i, p_i, v_i\}, s\}, (i = 1, ..., N),$$

где N – число доминантных цветов. Каждый доминантный цвет c_i – это вектор соответствующих компонентов цветового пространства (например, 3D вектор пространства RGB). Доля p_i , нормализованная на значения между 0 и 1, это доля пикселей на изображении или области изображения, соответствующей цвету c_i . Опциональная дисперсия цвета v_i описывает вариабельность цвета пикселей в кластере вокруг соответствующего репрезентативного (доминантного) цвета. Пространственная когерентность s – это число, представляющее общую пространственную однородность доминирующих цветов на изображении.

Модели классификации пигментного состава на основе CNN

В нашей работе мы использовали метод трансферного обучения (transfer learning): начальные значения набора данных сетевых весов были получены путем обучения сети на наборе данных ImageNet. Модели обучались на всю глубину, замороженных слоев не было. Для увеличения размера обучающей выборки и повышения генерализации использовались аугментации изображений алгоритмами, реализованными в библиотеке Albumentations (Buslaev et al., 2020). Преобразования к изображениям из обучающей выборки применялись с вероятностью 0.5 и включали: вертикальные и горизонтальные отражения методами HorizontalFlip() и VerticalFlip(); изменение яркости и контрастности методом RandomBrightnessContrast(brightness_limit=0.2, contrast limit=0.2).

7

Приложение 7. Детали архитектуры и параметры обучения модели сегментации и моделей классификации пигментного состава зерен

Задача	Обозначение модели	Архитектура кодера	Функция потерь	Метрика	Число эпох обучения	Размер батча	Начальная скорость обучения
Выделение области зерен	U-Net	ResNet-18	Dice	loU	10	4	lr = 5e-5
Классификация фрагмента области зерен	ResNet-18	ResNet-18	BCEWithLogitsLoss + Sigmoid	Accuracy	10	16	lr = 5e-5
Сегментация и классификация изображений	U-Net+ClassHead	EfficientNetB0	BCEWithLogitsLoss, DiceLoss + Sigmoid	loU (сегментация), Fscore и Accuracy (классификация)	10	2	lr = 1e-4
Сегментация изображений 2-канальная	U-Net+ClassSegment	ResNet34	DiceLoss + Sigmoid	Модернизиро- ванная IoU	10	4	lr = 1e-4

Приложение 8. Матрица ошибок определения класса образцов зерен.

A, AM, M, NP – антоцианы, антоцианы и меланины, меланины и отсутствие пигментов соответственно; H – пленчатые зерна.

Список литературы / References

Комышев Е.Г., Генаев М.А., Афонников Д.А. Анализ цветовых и текстурных характеристик зерен злаков на цифровых изображениях. Вавиловский журнал генетики и селекции. 2020;24(4):340-347. DOI 10.18699/VJ20.626

[Komyshev E.G., Genaev M.A., Afonnikov D.A. Analysis of color and texture characteristics of cereals on digital images. *Vavilov Journal of Genetics and Breeding*. 2020;24(4):340-347. DOI 10.18699/VJ20.626]

Buslaev A., Iglovikov V.I., Khvedchenya E., Parinov A., Druzhinin M., Kalinin A.A. Albumentations: fast and flexible image augmentations. *Information*. 2020;11(2):125. DOI 10.3390/info11020125

Cieplinski L. MPEG-7 color descriptors and their applications. In: International Conference on Computer Analysis of Images and Patterns. Springer, Berlin, Heidelberg, 2001;11-20

Gowda S.N., Yuan C. ColorNet: Investigating the importance of color spaces for image classification. In: Asian Conference on Computer Vision, Springer, Cham., 2018;581-596

Szymański P., Kajdanowicz T. A scikit-based Python environment for performing multi-label classification. *arXiv preprint arXiv*. 2017;1702.01460