Abstract:
To protect bread wheat from pathogens and, in particular, rust diseases, introgressive resistance genes located in alien translocations are commonly used. However, their application in practical breeding demands prebreeding studies. They reveal effects of translocations on the adaptive properties of plants, performance indices, yield, and the quality of the final product. For this purpose, we studied the L653 and L654 near-isogenic lines of spring bread wheat cultivar Dobrynya, resistant to leaf rust and carrying the combination of translocations 7DS • 7 DL-7Ae#1L + 2AL • 2AS-2MV#1, which host genes Lr19/Sr25 from Agropyron elongatum (Host.) P. B. and Lr37/Sr38/ Yr17 from Aegilops ventricosa Tausch. The recipient cv. Dobrynya and standard cv. Favorite were used as references. Phytopathological tests showed that L653 and L654 were highly resistant to Puccinia triticina at all stages of plant development and to Puccinia graminis race Ug99 + Lr24 (TTKST), but they were moderately susceptible to the Saratov population of this pathogen. The prebreeding research of lines L653 and L654 showed that the combination of 7 DS • 7 DL-7Ae#1L + 2AL • 2AS-2MV#1 translocations: (1) prolonged the seedling emergence –heading time by 7 days and increased the mean plant height by 10 cm; (2) did not affect lodging resistance or 1000 kernel weight; (3) affected grain yield in neither drought years nor years of leaf rust outbreaks; (4) reduced plant adaptation to abrupt vegetation condition changes; (5) reduced gluten amount without affecting its strength, dough tenacity, tenacity : extensibility ratio, flour strength, bread volume, or bread porosity. Thus, the combination of 7DS • 7 DL-7Ae#1L + 2AL • 2AS-2MV#1 translocations in the genotype of spring bread wheat cv. Dobrynya determines high resistance to leaf rust and stem rust race Ug99 + Lr24 (TTKST), being neutral with regard to agronomic performance indices.
About The Authors:
S. N. Sibikeev. Agricultural Research Institute for South-East Regions of Russia, Saratov, Russia, Russian Federation
References:
1. Abdrjaev M.R. Selekcionnaja cennost introgressivnyh linij jarovoj mjagkoj pshenicy v Povolzh’e. Diss. dokt selhoz nauk [The breeding value of spring bread wheat introgressive lines in the Volga region. Dr. agr. sci. diss.]. Saratov, 2006.
2. Ambrozova M., Dedryver F., Dumalasova V., Hanzalova A., Bartos P. Determination of the cluster of wheat rust resistance genes Yr17, Lr37 and Sr38 by molecular marker. Plant Protection Sci. 2002;38:41-45.
3. Bariana H.S., McIntosh R.A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes chromosome 2A. Genome. 1993;36:476-482.
4. Bayles R.A., Flath K., Hovmoller M.S., Vallavielle-Porta C. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie. 2000;20:805-811.
5. Dyck P.L., Friebe B. Evaluation of leaf rust resistance from wheat chromosomal translocation lines. Crop Sci. 1993;33:687-690.
6. Efremova T., Trubacheeva N., Chumanova E.,Badaeva E., Rosseeva L., Arbuzova V., Pershina L. Development and characterization of wheat-rye lines combining T1RS·1BL translocation and 5R(5D) chromosome substitution or T1RS·1BL and T5AS·5RL translocations. Cereal Res. Commun. 2014. DOI10.1556/CRC.2014.0013
7. Friebe B., Raupp W.J., Gill B.S. Wheat — alien translocation lines. Annu. Wheat Newslett. Kansas State University, USA. 2000:46:191.
8. Gul’tjaeva E.I., Ivanova O.V., Markelova T.S., Sibikeev S.N. Identification of leaf rust resistance genes at the introgression bread wheat cultivars and lines produced in the ARISER by phytopathologic test and molecular markers. Vestnik zashhity rastenij — Journal of plant protection. 2012;1:38-44.
9. Kovalenko E.D., Makarov A.A., Zhemchuzhina M.I., Kolomiec T.M., Solomatin D.A., Kiseleva M.I. Sovremennaja strategija immonogeneticheskoj zashhity zernovyh kultur ot boleznej [Modern strategy of immunogenetically protect crops from diseases]. Trudy VNIIF “Sovremennye sistemy zashhity rastenij ot boleznej i perspektivy ispolzovanija dostizhenij biotehnologii i gennoj inzhenerii” [Proc. of the All-Russian Institute of Phytopathology “The modern system of plant protection from diseases and prospects for the use of biotechnology and genetic engineering”]. Golitsino, 2003.
10. Labuschagne M.T., Pretorius Z.A., Grobbelaar B. The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on bread making quality in wheat. Euphytica. 2002;124:65-70.
11. McIntosh R.A. Preemptive breeding to control wheat rusts. Euphytica. 1992;63:103-113.
12. McIntosh R.A., Brown G.N. Anticipatory breeding for resistance to rust diseases in wheat. Annu. Rev. Phytopathol. 1997;35:311-326.
13. McIntosh R.A., Wellings C.R., Park R.F. Wheat Rusts. An atlas of resistance genes. CSIRO, Australia, 1995.
14. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. Proc. of the 12th Intern. Wheat Genet. Symp., 8-13 September 2013. Yokohama, Japan.
15. Miralles D.J., Resnicoff E., Carretero R. Yield improvement associated with Lr19 translocation in wheat. Scale and complexity in plant systems research: Gene-Plant-Crop Relations. Eds J.H.J. Spiertz, P.C. Struik, H.H. van Laar. 2007;171-178.
16. Prins R., Marais G.F., Janse B.J.H., Pretorius Z.A., Marais A.S. A physical map of the Thinopyrum — derived Lr19 translocation. Genome. 1996;39:1013-1019.
17. Rajaram S., Mann C.E., Ortis Ferrara G., Mujeeb-Kazi A. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. Proc. of Intern. Wheat Genet. Symp., Kyoto, Japan. 1983:613-621.
18. Roelfs A.P., Singh R.P., Saari E.E. Rust Diseases of Wheat. Concepts and Methods of Disease Management. Mexico.1992. DF: CIMMYT.
19. Sajfullin R.G. Geneticheskij kontrol soderzhanija belka v zerne jarovoj mjagkoj pshenicy. Diss. dokt biol. nauk. [Genetic control of protein content in grain of spring wheat. Dr. biol. sci. diss.] Odessa, 1990.
20. Sibikeev S.N., Druzhin A.E. The agronomic performance of Lr19+Lr37 translocations in the set of NILs in the genetic background of the spring bread wheat cultivar Dobrynya. Annu. Wheat Newslett. Kansas State University (USA). 2013;58:208.
21. Sibikeev S.N., Krupnov V.A., Voronina S.A., Elesin V.A. First report of leaf rust pathotypes virulent to highly effective Lr-genes transferred from Agropyron species to bread wheat. Plant Breeding. 1996;115:276-278.
22. Sibikeev S.N., Voronina S.A., Krupnov V.A. Effects from 7DL-7Ae#1 translocation on resistance to environmental factors and grain quality of bread wheat. Proc. of the 11th EWAC Intern. Conf. Novosibirsk, Russia. 2000;188-189.
23. Sibikeev S.N., Voronina S.A., Krupnov V.A., Druzhin A.E. Vlijanie Lr19+Lr26-translokacij na produktivnost i kachestvo zerna jarovoj mjagkoj pshenicy [The influence of Lr19+Lr26-translocations on productivity and grain quality of spring bread wheat] Trudy GNU NIISH Yugo-Vostoka [Proc. of the ARISER]. Saratov, 2009.
24. Singh R.P., Huerta-Espino J., Rajaram S., Crosa J. Agronomic effects from chromosome translocations 7DL — 7AG and 1BL — 1RS in spring wheat. Crop Sci. 1998;38:27-33.
25. Singh RP., Huerta-Espino J.H., Jin Y., Herrera-Foessel S., Njau P., Wanyera R., Ward R.W. Current resistance sources and breeding strategies to mitigate Ug99 threat. Proc. of the 11th Intern. Wheat Genet. Symp., Brisbane, QLD, Australia. 2008.
26. Sumikova T., Hanzalova A. Multiplex PCR assay to detect rust resistance genes Lr26 and Lr37 in wheat. Czech. J. Genet. Plant Breeding. 2010;46:85-89.
27. Villareal R.L., del Toro E., Mujeeb-Kazia., Rajaram S. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding. 1995;114:497-500.