Role of intestinal mucin-2 in the effectiveness of the treatment of Helicobacter spp. infection in laboratory mice. E. A. Litvinova, M. D. Belyaev, A. V. Prokhortchouk, V. S. Korostina, E. B. Prokhortchouk, E. N. Kozhevnikova

Abstract:

Abnormal synthesis of the main intestinal proteo­glycan mucin-2 is typical of ulcerative colitis and Crohn’s disease in humans. Those morphological changes of the mucus layer affect the diversity of the intestinal microflora. Antibiotics may be ineffective or even dangerous to humans or animals deficient for mucin-2 because of the risk of sepsis and chronic inflammation. In this study, we investigated the potential of antibiotics (clarithromycin, amoxicillin, and metronidazole) in elimination of patho­genic infection from Muc2 knockout mice (Muc2–/–). We assayed the population sizes of pathogens (Heli­co­bacter spp.) and symbiotic (E. coli) bacteria in the intestines of animals as a criterion of antibiotic efficacy. The damaging effect of antibacterial treatment on the host body was estimated from their survival rate. Three antibiotics were ineffective in the elimination of Helicobacter spp. from mucin-2-deficient mice. Moreover, the mortality of Muc2 knockout mice during the antibacterial treatment was 60 %. The survival of wild-type mice (C57BL/6J) during the treatment was 100 %. The weight of wild-type mice showed no decrease during the treatment. The Helico­bacter spp. pathogen was fully eradicated from wild-type mice. Thus, therapy of Helicobacter spp. infection in mucin-2 deficient animals is not only poorly efficient but even deadly. The high susceptibility to antibiotics allows Muc2 knockout mice to be used as a test model to evaluate the pharmacological safety of new antibiotics.

About The Authors:

E. A. Litvinova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

M. D. Belyaev. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

A. V. Prokhortchouk. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Russian Federation, Moscow

V. S. Korostina. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Russian Federation, Moscow

E. B. Prokhortchouk. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Russian Federation, Moscow

E. N. Kozhevnikova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

References:

1. Ayres J.S., Trinidad N.J., Vance R.E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 2012;18(5):799-806. DOI: 10.1038/nm.2729

2. Bergstrom K.S.B., Kissoon-Singh V., Gibson D.L., Ma C., Montero M., Sham H.P., Vallance B.A. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010;6(5):e1000902. DOI: 10.1371/journal.ppat.1000902

3. Bulois P., Desreumaux P., Neut C., Da A., Cortot A., Colombel J.F. Infectious agents and Crohn’s disease. Clin. Microbiol. Infect. 1999;5(10):601-604. DOI: 10.1111/j.1469-0691.1999.tb00415.x

4. Chin E.Y., Dangler C.A., Fox J.G., Schauer D.B. Helicobacter hepaticus infection triggers inflammatory bowel disease in T cell receptor alphabeta mutant mice. Comparative Med. 2000;50(6):586-594.

5. Ghai O.P., Menon P.S.N., Bhau M.K. Pathogenesis of diarrhea due to Escherichia coli. Indian J. Pediatr. 1980;47(4):311-316. DOI: 10.1007/BF02831325

6. Hansson G.C., Johansson M.E.V. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut. Microbes. 2010;1(1):51-54. DOI: 10.4161/gmic.1.1.10470

7. Kamada N., Chen G.Y., Inohara N., Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013;14(7):685-690. DOI: 10.1038/ni.2608

8. Kerton A., Warden P. Review of successful treatment for Helicobacter species in laboratory mice. Lab. Anim. 2006;40(2):115-122. DOI: 10.1258/002367706776319033

9. Martens E.C., Koropatkin N.M., Smith T.J., Gordon J.I. Complex glycan catabolism by the human gut microbiota: The bacteroidetes sus-like paradigm. J. Biol. Chem. 2009;284(37):24673-24677. DOI:10.1074/jbc.R109.022848

10. Martino-Cardona M. del C., Beck S.E., Brayton C., Watson J. Eradication of Helicobacter spp. by using medicated diet in mice deficient in functional natural killer cells and complement factor D. J. Am. Assoc. Lab. Anim. Sci. 2010;49(3):294-299.

11. Monceaux C.P., Testerman T.L., Boktor M., Jordan P., Adegboyega P., Mcgee D.J., Alexander J.S. Helicobacter infection decreases basal colon inflammation, but increases disease activity in experimental IBD. Open J. Gastroenterol. 2013;3:177-189. DOI: 10.4236/ojgas.2013.33029

12. Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V., Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. DOI:10.1186/gb-2012-13-9-r79

13. Nicklas W., Baneux P., Boot R., Decelle T., Deeny A.A., Fumanelli M., Illgen-Wilcke B. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab. Anim. 2002;36:20-42.

14. Nicklas W., Deeny A., Diercks P., Gobbi A., Illgen-Wilcke B., Seidelin M. FELASA guidelines for the accreditation of health monitoring programs and testing laboratories involved in health monitoring. Lab. Anim. 2010;39(2):43-48. DOI: 10.1258/la.2009.009086

15. O’Connor M. Ulcerative Colitis — Treatments, Special Populations and the Future. Publ.: InTech, 2011. DOI: 10.5772/2369

16. Pilarczyk-Zurek M., Chmielarczyk A., Gosiewski T., Tomusiak A., Adamski P., Zwolinska-Wcislo M., Strus M. Possible role of Escherichia coli in propagation and perpetuation of chronic inflammation in ulcerative colitis. BMC Gastroenterol. 2013;13(1):61. DOI: 10.1186/1471-230X-13-61

17. Rakoff-Nahoum S., Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317(5834):124-127. DOI: 10.1126/science.1140488

18. Sharp J.M., Vanderford D.A., Chichlowski M., Myles M.H., Hale L.P. Helicobacter infection decreases reproductive performance of IL10-deficient mice. Comparative Med. 2008;58(5):447-453.

19. Shomer N.H., Dangler C.A., Marini R.P., Fox J.G. Helicobacter bilis/ Helicobacter rodentium co-infection associated with diarrhea in a colony of SCID mice. Lab. Anim. Sci. 1998;48(5):455-459.

20. Ubeda C., Taur Y., Jenq R.R., Equinda M.J., Son T., Samstein M., Pamer E.G. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 2010;120(12):4332-4341. DOI: 10.1172/JCI43918

21. Van der Sluis M., de Koning B.A.E., de Bruijn A.C.J.M., Velcich A., Meijerink J.P.P., van Goudoever J.B., Einerhand A.W.C. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117-129. DOI: 10.1053/j.gastro.2006.04.020

22. Wlodarska M., Willing B., Keeney K.M., Menendez A., Bergstrom K.S., Gill N., Finlay B.B. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011;79(4):1536-1545. DOI: 10.1128/IAI.01104-10

This entry was posted in Tom 19-4. Bookmark the permalink.