Genetic control of traits determining phosphorus uptake by rice varieties (Oryza sativa L.). J. K. Goncharova, E. M. Kharitonov

Abstract:

The objectives of this research are: (1) to find genetic material associated with high growth rate
and maximum size of root system, (2) to study polymorphism of rice varieties for markers
connected with genes defining effective utilization of phosphorus, (3) to estimate the possibility of using listed SSR markers for introgression of previously mapped genes, and (4) to classify donor accessions found in the Russian gene pool into groups according to the probability of stability formation by various genetic mechanisms. Traits determining the rate of phosphorus uptake by rice varieties and their inheritance are discussed. Polymorphism of 72 rice accessions of Russian and foreign breeding by the rate of the formation of the root system and its size at maturity is considered. The highest rates of root system formation are found in varieties Liman, Arborio, Dalnevostochnyi, Selenio, Oceano, Atlant, Musa, Fontan, Cerere, Sharm, Serpentine, Khankaiskii 52, Leader, Boyarin, and Druzhnyi. Russian varieties outperform Italian ones in growth rate. Root weights at the maturation stage varied from 1,5 to 4,5 grams. Varieties Carnise, Rapan, Onix and G-57 display the greatest root weights at the maturation stage. Root lengths at the maturation stage varied from 17 to 26 cm. Varieties D 25-2, G 75-5, Ryzhik, G-52, Krepysh, and Snezhinka had the maximum values. Study of polymorphism of Russian and foreign varieties on the markers associated with the genes determining uptake of phosphorus has revealed polymorphism for all markers; thus, marker-assisted selection can be applied to them in breeding for this trait. The maximum number of alleles is noted for the RM 247 marker, located on chromosome 12.

About The Authors:

J. K. Goncharova. All-Russia Rice Research Institute, Krasnodar, Belozernyi settlement, Russia, Russian Federation

E. M. Kharitonov. All-Russia Rice Research Institute, Krasnodar, Belozernyi settlement, Russia, Russian Federation

References:

1. Goncharova Yu.K., Litvinova E.V., Ochkas N.A. Genetika priznakov, obespechivayushchikh effektivnost’ mineral’nogo pitaniya u risa. Tr. Kubanskogo gos. agrarnogo un-ta. 2010b.

2. Goncharova Yu.K. Nasledovanie priznakov, opredelyayushchikh fiziologicheskiĭ bazis geterozisa u gibridov risa. S.-kh. biologiya. 2010;5:72-78.

3. Goncharova Yu.K. Selektivnaya eliminatsiya alleleĭ pri poluchenii digaploidnykh liniĭ v kul’ture pyl’nikov risa. Genetika. 2013;49(2):196-203.

4. Goncharova Yu.K., Kharitonov E.M., Litvinova E.V. Priroda geterozisnogo effekta. Dokl. RASKhN. 2010a;(4):10-11.

5. Goncharova Yu.K., Kharitonov E.M. Povyshenie produktivnosti mezhpodvidovykh gibridov risa. Vavilovskiĭ zhurnal genetiki i selektsii. 2012;16(4):556-565.

6. Kharitonov E.M., Goncharova Yu.K. Mekhanizm soleustoĭchivosti rossiĭskikh sortov risa. Agrarnyĭ vestn. Urala. 2010;8(74):45-47.

7. Kharitonov E.M., Goncharova Yu.K. Effektivnost’ mineral’nogo pitaniya risa. Dokl. RASKhN. 2011;(2):10-12.

8. Batjes N.H. A world data set of derived soil properties by FAOUNESCO soil unit for global modeling. Soil Use Manage. 1997;13:9-16.

9. Chin J.H., Gamuyao R., Dalid C., Bustamam M., Prasetiyono J., Moeljopawiro S., Wissuwa M., Heuerm S. Developing Rice with High Yield under Phosphorus Deficiency: Pup1 Sequence to Application. Plant Physiol. 2011;156:1202-1216.

10. Dobermann A., Fairhurst T. Phosphorus deficiency. Rice: nutrient disorders and nutrient management. International Rice Res. Institute, Los Ban ̃os, Philippines. 2000.

11. Fageria N.K., Baligar V.C. Upland rice genotypes evaluation for phosphorus use efficiency. J. Plant Nutr. 1997;20:499-509.

12. Goncharova Y.K. Inheritance of heat resistance in rice. Russ. J. Genet.: Applied Res. 2011;1(3):248-251 .

13. Guimil S., Chang H.S., Zhu T., Sesma A., Osbourn A., Roux C., Ioannidis V., Oakeley E.J., Docquier M., Descombes P., Briggs S.P., Paszkowski U. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl Acad. Sci. USA. 2005;102:8066-8070.

14. Hammond J.P., Broadley M.R., White P.J. Genetic responses to phosphorus deficiency. Ann. Bot. 2004;94:323-332.

15. Kirk G.D., George T., Courtois B., Senadhira D. Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems. Field Crops Res. 1998;56:73-92.

16. Lambers H., Shane M.W., Cramer M.D., Pearse S.J., Veneklaas E.J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 2006; 98:693-713.

17. Marschner P., Solaiman Z., Rengel Z. Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil. 2006;283:11-24.

18. Misson J., Raghothama K.G., Jain A., Jouhet J., Block M. A., Bligny R., Ortet P., Creff A., Somerville S., Rolland N., Doumas P., Nacry P., Herrerra-Estrella L., Nussaume L., Thibaud M.C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl Acad. Sci. USA. 2005;102:11934-11939.

19. Morcuende R., Bari R., Gibon Y., Zheng W., Pant B.D., Blasing O., Usadel B., Czechowski T., Udvardi M.K., Stitt M., Scheible W.R. Genome-wide reprogramming of metabolism and regulatorynetworks of Arabidopsis in response to phosphorus. Plant Cell Environ. 2007;30:85-112.

20. Nguyen B.D., Brar D.S., Bui B.C., Nguyen T.V., Pham L.N., Nguyen H.T. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryzarufipogon Griff., into indica rice (Oryza sativa L.). Theor. Appl. Genet. 2003;106:583-593.

21. Nguyen T.L., Bui C.B. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryzasativa L.). Omon Rice. 2006;14:1-9.

22. Ni J.J., Wu P., Senadhira D., Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor. Appl. Genet. 1998;97:1361-1369.

23. Rariasca-Tanaka J., Satoh K., Rose T., Mauleon R., Wissuwa M. Stress response versus stress tolerance: a transcriptome analysis of two rice lines contrast in tolerance to phosphorus deficiency. Rice. 2009;2:167-185.

24. Peng S., Ismail A.M. Physiological basis of yield and environmental adaptation in rice. (Eds H.T. Nguyen, A. Blum). Physiology and biotechnology integration for plant breeding. N.Y.: Marcel Dekker, 2004.

25. Radersma S., Grierson P.F. Phosphorus mobilisation in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil. 2004;259:209-219.

26. Rengel Z., Romheld V., Marschner H. Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J. Plant Physiol. 1998;152:433-438.

27. Richardson A.E., Hadobas P.A., Hayes J.E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 2001;256:641-649.

28. Runge-Metzger A. Closing the cycle: obstacles to efficient P management for improved global food security. Ed. H. Tiessen. Phosphorus in the global environment: transfers, cycles and management. N.Y.: Wiley, 1995.

29. Shane M.W., Lambers H. Cluster roots: a curiosity in context. Plant Soil. 2005;274:99-123.

30. Shimizu A., Yanagihara S., Kawasaki S., Ikehashi H. Phosphorus deficiency — induced root elongation and its QTL in rice (Oryza sativa L.). Theor. Appl. Genet. 2004;109:1361-1368.

31. Su J., Xiao Y., Li M., Liu Q., Li B., Tong Y., Jia J., Li Z. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant and Soil. 2006;281:25-36.

32. Suzuki M.T., Takashi T., Satoshi W., Shinpei M., Junshi Y., Naoki K., Shoshi K., Hiromi N., Satoshi M., Naoko K.N. Biosynthesis and secretion of mugineic acid family phytosidero phores in zinc deficient barley. Plant J. 2006;48:85-97.

33. Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol. 2003;133:1947-1958.

34. Wissuwa M. Combining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil. 2005;269:57-68.

35. Wissuwa M., Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding. 2001;120:43-48.

36. Wissuwa M., Gamat G., Ismail A.M. Is root growth under phosphorus deficiency affected by source or sink limitations. J. Exp. Bot. 2005; 56:1943-1950.

37. Wissuwa M., Wegner J., Ae N., Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor. Appl. Genet. 2002;105:890-897.

38. Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008;48:391-407.

39. Ye G., Smith K.F. Marker-assisted Gene Pyramiding for Cultivar development. Plant Breed. Rev. 2010;33:234.

40. Zhang Y.J., Dong Y.J., Zhang J.Z., Xiao K., Xu J.L., Terao H. Mapping QTLs for deficiency phosphorus response to root-growth of rice seedling. Rice Genet. Newslett. 2006;25:36-37.

This entry was posted in Tom 19-2. Bookmark the permalink.