A model of the artificial metastasis of human epidermoid carcinoma A431 in nude mice for examination of the oncolytic activity of vaccinia virus. G. V. Kochneva, A. A. Grazhdantseva, G. F. Sivolobova, A. V. Tkacheva, A. N. Shvalov, A. Yu. Unusova, E. I. Ryabchikova, S. V. Netesov

Abstract:

Human carcinoma A431 cells were subcutaneously injected into nude mice at points remote from each other. One of the two xenografts developed after­wards was used for treatment with a recombinant vaccinia virus, while another served as an artificial metastasis. We used the attenuated recombinant vaccinia virus (VACV) VVdGF-GFP2 of the L-IVP strain (GenBank accession number KP233807), with deletion of two virulence genes: the virus growth factor and thymidine kinase, with the gene for the green fluorescent protein (GFP2) inserted in an area of the latter. Treatments were performed by a single intratumoral injection of the recombinant VACV at a dose of 107 PFU/mouse. VACV was detected in cells of the artificial metastasis as early as two days following infection, and after 8 days virus concentrations were com- parable with those in the infected tumor (~109 PFU/ml). Electron microscopy revealed selective replication of the recombinant in tumor cells. Targeted accumulation of GFP2 in both tumor and metastasis was shown in the UV-images of the mice obtained using the In-vivo Multispectral Imaging System (Bruker, Germany). Complete destruction of the tumor was registered after 12 days click here, and that of metastasis, after 20 days post injection of VVdGF-GFP2. The destruction process was accompanied by pronounced edema and leukocyte infiltration of tumor tissue. The recombinant virus induced a significant reduction in the sizes of the tumor and metastasis: by the end of the experiment (35 days) the xenografts in the control mice were 10 times larger than those in the treated mice (5000 vs. 500 mm3). Our study showed that the attenuated VACV administered by the peripheral route not only is able to destroy the primary tumor, but also has a distinct antimeta­static action.

About The Authors:

G. V. Kochneva. State Research Center of Virology and Biotechnology “VECTOR”, Russian Federation, Novosibirsk region, Koltsovo

A. A. Grazhdantseva. State Research Center of Virology and Biotechnology “VECTOR”, Russian Federation, Novosibirsk region, Koltsovo

G. F. Sivolobova. State Research Center of Virology and Biotechnology “VECTOR”, Russian Federation, Novosibirsk region, Koltsovo

A. V. Tkacheva. State Research Center of Virology and Biotechnology “VECTOR”; Institute of Chemical Biology and Fundamental Medicine SB RAS, Russian Federation, Novosibirsk region, Koltsovo; Novosibirsk

A. N. Shvalov. State Research Center of Virology and Biotechnology “VECTOR”, Russian Federation, Novosibirsk region, Koltsovo

A. Yu. Unusova. Institute of Chemical Biology and Fundamental Medicine SB RAS, Russian Federation, Novosibirsk

E. I. Ryabchikova. Institute of Chemical Biology and Fundamental Medicine SB RAS, Russian Federation, Novosibirsk

S. V. Netesov. State Research Center of Virology and Biotechnology “VECTOR”; Novosibirsk State University, Russian Federation, Novosibirsk region, Koltsovo; Novosibirsk

References:

1. Breitbach C., Arulanandam R., De Silva N., Thorne S., Thorne S., Daneshmand M., Moon A., Burke J., Hwang T. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73(4):1265-1275.

2. Breitbach C., Burke J., Jonker D., Stephenson J., Haas A., Chow L., Nieva J., Hwang T., Moon A., Thorne S., Pelusio A., LeBoeuf F., Burns J., Evgin L., De Silva N., Cvancic S., Robertson T., Je J., Lee Y., Parato K., Diallo J., Fenster A., Daneshmand M., Bell J., Y., Parato K., Diallo J., Fenster A., Daneshmand M., Bell J., Kirn D. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99-102.

3. Breitbach C.J., Thorne S.H., Bell J.C., Kirn D.H. Targeted and armed oncolytic poxviruses for cancer: the lead example of JX-594. Curr. Pharm. Biotechnol. 2012;3:1768-1772.

4. Cochran M.A., Puckett C., Moss B. In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J. Virol. 1985;54(1):30-37.

5. Haddad D., Chen N., Zhang Q., Chen C.-H., Yu Y.A., Gonzalez L., Aguilar J., Li P., Wong J., Szalay A.A., Fong Y. A novel genetically modified oncolytic vaccinia virus in experimental models is effective against a wide range of human cancers. Ann. Surg. Oncol. 2012;19:S665-S674.

6. Kochneva G.V., Babkina I.N., Lupan T.A., Grazhdantseva A.A., Yudin P.V., Sivolobova G.F., Shvalov A.N., Popov E.G., Babkin I.V., ., Sivolobova G.F., Shvalov A.N., Popov E.G., Babkin I.V., Netesov S.V., Chumakov P.M. Apoptin enhances the oncolytic activity of Vaccinia Virus in vitro. Molekulyarnaya biologiya — Molecular Biology. 2013;47(5):842-852.

7. Kochneva G.V., Sivolobova G.F., Yudina K.V., Babkin I.V., Chumakov P.M., Netesov S.V. Oncolytic poxviruses. Molekulyarnaya genetika, mikrobiologiya i virusologiya — Mol. Genet. Microbiol. Virol. 2012; 1:8-15.

8. Kochneva G., Zonov E., Grazhdantseva A., Unusova A., Sivolobova G., Popov E., Taranov O., Netesov S., Chumakov P., Ryabchikova E. Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression. Oncotarget. 2014;5(22): 11269-11282.

9. Kochneva G.V., Urmanov I.H., Ryabchicova E.I., Streltsov V.V., Serpinsky O.I. Fine mechanisms of ectromelia virus thymidine kinasenegative mutants avirulence. Virus Res. 1994;34:49-61.

10. Marennikova S.S., Shchelkunov S.N. Patogennye dlya cheloveka ortopoksvirusy [Orthopoxviruses Pathogenic for Humans]. Moscow: KMK, 1998.

11. McCart A., Bartlett D., Moss B. Combined growth factor-deleted and thymidine kinase-deleted vaccinia virus vector. US Patent. 2007. N 7208313. 7208313.

12. Thorne S.H., Hwang T.H., O’Gorman B.E., Bartlett D.L., Sei S., Adiata F., Brown C., Werier J., Jo J.H., Lee D.E., Wang Y., Bell J., Kirn D.H. Rational strain selection and engineering creates a broad- D.H. Rational strain selection and engineering creates a broadspectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Invest. 2007;117:3350-3358. 117:3350-3358. :3350-3358. 3350-3358.

13. Unusova A.Yu., Zonov E.V., Kochneva G.V., Ryabchikova E.I. Morphology of human A431 carcinoma xenografts in nude mice. Vestnik Novosibirskogo Gosudarstvennogo Universiteta — The Herald of Novosibirsk State University. 2014;12(3):42-48.

14. Weibel S., Raab V., Yu Y.A., Worschech A., Wang E., Marincola F.M., Szalay A.A. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2011;11:68-74.

15. Yu Z., Li S., Brader P., Chen N., Yu Y.A., Zhang Q., Szalay A.A., Fong Y., Wong R.J. Oncolytic vaccinia therapy of squamous cell Y., Wong R.J. Oncolytic vaccinia therapy of squamous cell carcinoma. Mol. Cancer. 2009;8:45-53.

This entry was posted in Tom 19-4. Bookmark the permalink.