Change of salt tolerance in common wheat after introgression of genetic material from Aegilops speltoides and Triticum timopheevii. R. S. Yudina, I. N. Leonova, E. A. Salina, E. K. Khlestkina

Abstract:

To improve biotic and abiotic stress tolerance in common wheat (Triticum aestivum L.), novel genotypes with genomic fragments introgressed from other cereal species are extensively developed. One of the most important abiotic environmental factors that impede the expansion of wheat cultivation areas is soil salinity. Salt-sensitive wheat varieties have poor yield and impaired grain quality when exposed to salinity. The aim of this study was to evaluate
the degree of influence of alien genetic material on salinity tolerance in common wheat seedlings. Seedlings of introgression lines carrying single fragments of Aegilops speltoides and T. timopheevii genomes in common wheat chromosomes 2А, 5В, and 6В, were tested for salt tolerance. The parental common spring wheat genotypes Saratovskaya 29, Novosibirskaya 29 and Rodina-1, possessing mode- rate salt tolerance, were used as reference. The expe- riment showed that the presence of the translocation T5BS • 5BL-5SL either in Novosibirskaya 29 or in Rodina-1 increased salt tolerance. On the contrary, another translocation between T. aestivum and Ae. speltoides (T6BS • 6BL-6SL) made wheat more sensitive to salinity. Different fragments of T. timo- pheevii genome had different effects: introgression into the chromosome 2A increased salt tolerance, whereas introgression into chromosome 5B reduced it significantly. The observed differences between
the parental wheat genotypes and the introgression lines derived from them are discussed with regard to the locations of alien introgression fragments in the lines tested and the map positions of known wheat QTLs and major genes related to salt tolerance. It is assumed that a locus yet undescribed that affects wheat salt tolerance is located distal to the Xgwm0604 marker on the long arm of chromosome 5B.

About The Authors:

R. S. Yudina. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation

I. N. Leonova. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation

E. A. Salina. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation

E. K. Khlestkina. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation

References:

1. Adonina I.G., Susolkina N.V., Timonova E.M., Khristov Yu.A., Salina E.A. Sozdanie liniĭ myagkoĭ pshenitsy s translokatsiyami ot Aegilops speltoides Tausch. i ikh otsenka na ustoĭchivost’ k listovoĭ rzhavchine. Genetika. 2012;48(4):488-494.

2. Ivanov Yu.M., Udovenko G.V. Tekhnologicheskaya modifikatsiya metoda prorostkov i analiz ego prigodnosti dlya otsenki soleustoĭchivosti rasteniĭ. Tr. po prikl. botan., genet. i selektsii. 1970;43:160-168.

3. Pat. RU 2138156. Sposob sozdaniya soleustoĭchivykh form myagkoĭ pshenitsy. Shchapova A.I., Kravtsova L.A. Opubl. 27.09.1999.

4. Pat. RU 2484621. Sposob sozdaniya liniĭ myagkoĭ pshenitsy, ustoĭchivykh k buroĭ rzhavchine. Salina E.A., Leonova I.N., Petrash N.V., Adonina I.G., Shcherban’ A.B. Opubl. 20.06.2013.

5. Yudina R.S., Leonova I.N., Salina E.A., Khlestkina E.K. Vliyanie chuzherodnykh introgressiĭ v genome pshenitsy na ee ustoĭchivost’ k osmoticheskomu stressu. Vavilovskiĭ zhurnal genetiki i selektsii. 2014;18(4/1):643-649.

6. Chen P., You C., Hu Y., Chen S., Zhou B., Cao A., Wang X. Radiationinduced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 2013;31:477-484. DOI: 10.1007/s11032-012-9804-x

7. Genc Y., Oldach K., Verbyla A.P., Lott G., Hassan M., Tester M., Wallwork H., McDonald G. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 2010;121:877-894. DOI: 10.1007/s00122-010-1357-y

8. Gurmani A.R., Khan S.U., Mabood F., Ahmed Z., Butt S.J., Din J., Mujeeb-Kazi A., Smith D. Screening and selection of synthetic hexaploid wheat germplasm for salinity tolerance based on physiological and biochemical characters. Int. J. Agric. Biol. 2014;16:681-690.

9. Houshmand S., Arzani A., Mirmohammadi-Maibody S.A.M. Effects of salinity and drought stress on grain quality of durum wheat. Commun. Soil Sci. Plant Analysis. 2014;45:297-308. DOI:10.1080/00103624.2013.861911

10. Huang S., Spielmeyer W., Lagudah E.S., James R.A., Platten J.D., Dennis E.S., Munns R. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 2006;142:1718-1727. DOI: 10.1104/pp.106.088864

11. Jamil M., Kanwal M., Aslam M.M., Khan S.U., Malook I., Tu J., Rehman S. Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Austr. J. Crop Sci. 2014;8:159-170.

12. King I.P., Forster B.P., Law C.C., Cant K.A., Orford S.E., Gorham J., Reader S., Miller T.E. Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytologist. 1997;37: 75-81. DOI:10.1046/j.1469-8137.1997.00828.x

13. Lindsay M.P., Lagudah E.S., Hare R.A., Munns R. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biol. 2004;31:1105-1114. DOI: 10.1071/FP04111

14. Ma L.Q., Zhou E.F., Huo N.X., Zhou R.H., Wang G.Y., Jia J.Z. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica. 2007;153:109-117. DOI:10.1007/s10681-006-9247-8

15. Maas E.V., Grieve C.M. Spike and leaf development of salt-stressed wheat. Crop Sci. 1990;30:1309-1313. DOI: 10.2135/cropsci1990.0011183X003000060031x

16. Maas E.V., Lesch S.M., Francois L.E., Grieve C.M. Tiller development in salt-stressed wheat. Crop Sci. 1994;34:1594-1603. DOI: 10.2135/cropsci1994.0011183X003400060032x

17. Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 1947;18:50-60. DOI: 10.1214/aoms/1177730491

18. Mardani Z., Rabiei B., Sabouri H., Sabouri A. Identification of molecular markers linked to salt-tolerant genes at germination stage of rice. Plant Breeding. 2014;133:196-202. DOI: 10.1111/pbr.12136

19. Pestsova E.G., Röder M.S., Börner A. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet. 2006;112:634-647. DOI: 10.1007/s00122-0050166-1

20. Sadat Noori S.A. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides. Euphytica. 2005;146:149-155. DOI: 10.1007/s10681-005-8001-y

21. Sayed H.I. Diversity of salt tolerance in a germplasm collection of wheat (Triticum spp.). Theor. Appl. Genet. 1985;69:651-657. DOI: 10.1007/BF00251118

22. Spearman C. The proof and measurement of association between two things. Amer. J. Psychol. 1904;15:72-101. DOI: 10.2307/1412159Suiyun C., Suiyun G., Taiyong Q., Fengnin X., Yan J., Huimin C. In-

23. trogression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Science. 2004;167:773-779. DOI: 10.1016/j.plantsci.2004.05.010

24. Timonova E.M., Leonova I.N., Röder M.S., Salina E. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol. Breed. 2013;31:123-136. DOI: 10.1007/s11032-012-9776-x

25. Turki N., Harrabi M., Okuno K. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J. Arid Land Studies. 2012;22(1):311-314.

26. Wang Z., Wang J., Bao Y., Wu Y., Zhang H. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica. 2011;178:297-307. DOI: 10.1007/s10681-010-0287-8

This entry was posted in Tom 19-2. Bookmark the permalink.