DNA repair in cancer stem cells as a factor for glioma resistance to radiotherapy. Yu. S. Makusheva, G. L. Dianov

Abstract:

Gliomas are brain tumors originating from glial cells and their precursor cells. In spite of currently used therapy, patient survival remains very poor. The main reason for dismal prognosis is the high level of tumor recurrence because of resistance to different ways of treatment. Currently, it is believed that glioma development is connected with the existence of cancer stem cells (CSCs), or tumor-initiating cells. The theory of hierarchal tumor structure is now commonly accepted. It accounts for characteristics of these cells, namely, the capability of self-renewal and differentiation into astrocytes, oligodendrocytes, and neurons. Moreover, these cells bear multiple genetic lesions typical of cancer cells. Thus, the presence of these cells after surgery and further treatment allows the tumor to recur. The data obtained in recent years confirm the important role of CSCs in the development of tumor resistance to chemo- and radiotherapy. In this review, we present general information about classification and treatment of gliomas and consider results of research connected with the influence of radiation therapy. Some authors show that DNA repair enables CSCs to survive even after treatment. To sum up, it is shown that DNA repair contributes to the development of tumor resistance to ionizing radiation. In addition, our work confirms the hypothesis that inhibition of DNA repair processes in these cells leads to tumor sensitization to radiotherapy.

About The Authors:

Yu. S. Makusheva. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation

G. L. Dianov. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK, Russian Federation

References:

1. Abbotts R., Thompson N., Madhusudan S. DNA repair in cancer: emerging targets for personalized therapy. Cancer Manag. Res. 2014;6:77-92. DOI: 10.2147/CMAR.S50497

2. Aguilar-Morante D., Cortes-Canteli M., Sanz-Sancristobal M., Santos A., Perez-Castillo A. Decreased CCAAT/enhancer binding protein β expression inhibits the growth of glioblastoma cells. Neuroscience. 2011;176:110-119. DOI: 10.1016/j.neuroscience.2010.12.025

3. Altman J. Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp. Neurol. 1962;5:302-318.

4. Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-760. DOI: 10.1038/nature05236

5. Biddlestone-Thorpe L., Sajjad M., Rosenberg E.J., Beckta M., Valerie N.C., Tokarz M., Adams B.R., Wagner A.F., Khalil A., Gilfor D., Golding S.E., Deb S., Temesi D.G., Lau A., O’Connor M.J., Choe K.S., Parada L.F., Lim S.K., Mukhopadhyay N.D., Valerie K. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 2013;19(12):3189-3200. DOI: 10.1158/1078-0432.CCR-12-3408

6. Brazel C.Y., Limke T.L., Osborne J.K., Miura T., Cai J., Pevny L., Rao M.S. Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell. 2005;4(4):197-207. DOI: 10.1111/j.1474-9726.2005.00158.x

7. Dahan P., Martinez Gala J., Delmas C., Monferran S., Malric L., Zentkowski D., Lubrano V., Toulas C., Cohen-Jonathan Moyal E., Lemarie A. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis. 2014. DOI:10.1038/cddis.2014.509

8. Galli R., Binda E., Orfanelli U., Cipelletti B., Gritti A., De Vitis S., Fiocco R., Foroni C., Dimeco F., Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011-7021. DOI: 10.1158/0008-5472.CAN-04-1364

9. Hemmati H.D., Nakano I., Lazareff J.A., Masterman-Smith M., Geschwind D.H., Bronner-Fraser M., Kornblum H.I. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA. 2003;100(25):15178-15183. DOI: 10.1073/pnas.2036535100

10. Heywood R.M., Marcus H.J., Ryan D.J., Piccirillo S.G., Al-Mayhani T.M., Watts C. A review of the role of stem cells in the development and treatment of glioma. Acta Neurochir. (Wien). 2012;154(6):951-969. DOI:10.1007/s00701-012-1338-9

11. Ignatova T.N., Kukekov V.G., Laywell E.D., Suslov O.N., Vrionis F.D., Steindler D.A. Human cortical glial tumors contain neural stemlike cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39(3):193-206. DOI: 10.1002/glia.10094

12. Kesari S., Advani S.J., Lawson J.D., Kahle K.T., Ng K., Carter B., Chen C.C. DNA damage response and repair: insights into strategies for radiation sensitization of gliomas. Future Oncol. 2011;7(11):1335-1346. DOI:10.2217/fon.11.111

13. Kirschenbaum B., Nedergaard M., Preuss A., Barami K., Fraser R.A., Goldman S.A. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex. 1994;4(6):576-589.

14. Kleihues P., Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol. 1999;1(1):44-51.

15. Lee J., Kotliarova S., Kotliarov Y., Li A., Su Q., Donin N.M., Pastorino S., Purow B. W., Christopher N., Zhang W., Park J.K., Fine H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391-403. DOI: 10.1016/j.ccr.2006.03.030

16. Lim Y.C., Roberts T.L., Day B.W., Harding A., Kozlov S., Kijas A.W., Ensbey K.S., Walker D.G., Lavin M.F. A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells. Mol. Cancer Ther. DOI: ;11(9):1863-1872.DOI:10.1158/1535-7163.MCT-11-1044

17. Lim Y.C., Roberts T.L., Day B.W., Stringer B.W., Kozlov S., Fazry S., Bruce Z.C., Ensbey K.S., Walker D.G., Boyd A.W., Lavin M.F. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol. Oncol. 2014;8(8):1603-1615. DOI: 10.1016/j.molonc.2014.06.012

18. Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., Scheithauer B.W., Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. DOI: 10.1007/s00401-007-0243-4

19. McCord A.M., Jamal M., Williams E.S., Camphausen K., Tofilon P.J. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin. Cancer Res. 2009;15(16):5145-5153. DOI: 10.1158/1078-0432.CCR-09-0263

20. Neman J., Jandial R. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition. Biologics. 2010;4:157-162. DOI: 10.2147/BTT.S9497

21. Ohgaki H., Dessen P., Jourde B., Horstmann S., Nishikawa T., Di Patre P.L., Burkhard C., Schüler D., Probst-Hensch N.M., Maiorka P.C., Baeza N., Pisani P., Yonekawa Y., Yasargil M.G., Lütolf U.M., Kleihues P. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64(19):6892-6899. DOI:10.1158/0008-5472.CAN-04-1337

22. Ohgaki H., Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 2005;64(6):479-489.

23. Ohgaki H., Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 2007;170(5):1445-1453. DOI: 10.2353/ajpath.2007.070011

24. Okamoto Y., Di Patre P.L., Burkhard C., Horstmann S., Jourde B., Fahey M., Schüler D., Probst-Hensch N.M., Yasargil M.G., Yonekawa Y., Lütolf U.M., Kleihues P., Ohgaki H. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 2004;108(1):49-56. DOI: 10.1007/s00401-004-0861-z

25. Olushin V.E. Glial brain tumors: short literature review and patient treatment protocol. Neyrokhirurgiya — Russ. J. Neurosurgery. 2005; 4:41-47.

26. Patru C., Romao L., Varlet P., Coulombel L., Raponi E., Cadusseau J., Renault-Mihara F., Thirant C., Leonard N., Berhneim A., Mihalescu-Maingot M., Haiech J., Bièche I., Moura-Neto V., Daumas-Duport C., Junier M.P., Chneiweiss H. CD133, CD15/SSEA-1, CD34

27. or side populations do not resume tumor-initiating properties of longterm cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer. 2010;10:66. DOI: 10.1186/1471-2407-10-66

28. Reynolds B.A., Tetzlaff W., Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 1992;12(11):4565-4574.

29. Riemenschneider M.J., Jeuken J.W., Wesseling P., Reifenberger G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 2010;120(5):567-584. DOI: 10.1007/s00401-010-0736-4

30. Ropolo M., Daga A., Griffero F., Foresta M., Casartelli G., Zunino A., Poggi A., Cappelli E., Zona G., Spaziante R., Corte G., Frosina G. Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol. Cancer Res. 2009;7(3):383-392. DOI: 10.1158/1541-7786.MCR-08-0409

31. San Filippo J., Sung P., Klein H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008;77:229-257. DOI: 10.1146/annurev.biochem.77.061306.125255

32. Singh S.K., Clarke I.D., Terasaki M., Bonn V.E., Hawkins C., Squire J., Dirks P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-5828.

33. Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., Henkelman R.M., Cusimano M.D., Dirks P.B. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-401. DOI:10.1038/nature03128

34. Strelnikov V.V., Zemlyakova V.V. Diagnostics of molecular genetics factors of brain tumors. Introduction to molecular diagnostics. [Molekulyarno-geneticheskaya diagnostika opukholey golovnogo mozga. Vvedenie v molekulyarnuyu diagnostiku.] Eds. M.A. Paltsev, D.V. Zaletayeva. Moscow, Meditsina, 2011;2:486-503.

35. Tamura K., Aoyagi M., Wakimoto H., Ando N., Nariai T., Yamamoto M., Ohno K. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J. Neurosurg. 2010;113(2):310-318. DOI:

36. 3171/2010.2.JNS091607

37. Toedt G., Barbus S., Wolter M., Felsberg J., Tews B., Blond F., Sabel M.C., Hofmann S., Becker N., Hartmann C., Ohgaki H., von Deimling A., Wiestler O.D., Hahn M., Lichter P., Reifenberger G., Radlwimmer B. Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int. J. Cancer. 2011;128(5):1095-1103. DOI: 10.1002/ijc.25448

38. Uchida N., Buck D.W., He D., Reitsma M.J., Masek M., Phan T.V., Tsukamoto A.S., Gage F.H., Weissman I.L. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA. 2000;97(26):14720-14725. DOI: 10.1073/pnas.97.26.14720

39. Vecchio D., Daga A., Carra E., Marubbi D., Baio G., Neumaier C.E., Vagge S., Corvò R., Pia Brisigotti M., Louis Ravetti J., Zunino A., Poggi A., Mascelli S., Raso A., Frosina G. Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer. 2014;135(2):479-491. DOI: 10.1002/ijc.28680

40. Wang J., Sakariassen P., Tsinkalovsky O., Immervoll H., Bøe S.O., Svendsen A., Prestegarden L., Røsland G., Thorsen F., Stuhr L., Molven A., Bjerkvig R., Enger P. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer. 2008;122(4):761-768. DOI: 10.1002/ijc.23130

41. Ward A., Khanna K.K., Wiegmans A.P. Targeting homologous recombination, new pre-clinical and clinical therapeutic combinations inhibiting RAD51. Cancer Treat. Rev. 2015;41(1):35-45. DOI:10.1016/j.ctrv.2014.10.006

42. Zaidi H.A., Kosztowski T., DiMeco F., Quiñones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J. Neurooncol. 2009;93(1):49-60. DOI: 10.1007/s11060-009-9856-x

43. Zeppernick F., Ahmadi R., Campos B., Dictus C., Helmke B.M., Becker N., Lichter P., Unterberg A., Radlwimmer B., Herold-Mende C.C. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res. 2008;14(1):123-129. DOI: 10.1158/1078-0432.CCR-07-0932

This entry was posted in Tom 19-3. Bookmark the permalink.