The modulating effect of coat color mutations on the generation and neutralization of reactive oxygen species in the Аmerican mink (Neovison vison) as a model. S. N. Sergina, V. A. Ilyukha, I. V. Baishnikova, T. N. Ilyina


The influence of gene mutations encoding coat color on parameters of reactive oxygen species (RO S) generation and neutralization in six organs of the mink (Neovison vison) was evaluated. The study was conducted with standard dark brown (+/+), monorecessive royal pastel (b/b) and silver-blue (р/р), and direcessive sapphire (a/a р/р) mutant minks. It was found that the functioning of both RO S generation and neutralization systems was genotypespecific. The direcessive sapphire (a/a р/р) combination induced high levels of antioxidant enzymes’ activities as well as of thiobarbituric acid-reactive products (TBА-RPs), characterizing lipid peroxidation level. In heart tissue, coat color mutations exerted modulating effects on both RO S generation and the level of low-molecular-weight antioxidants. The royal pastel (b/b) genotype showed the highest level of RO S generation, and the sapphire (a/a р/р), the lowest (statistically significant difference from standard). Coat color mutations modulate the dintensity of RO S generation and neutralization in lung tissue. On the one hand, royal pastel (b/b) in comparison with standard dark brown (+/+) decreases the total level of RO S generation, and on the other hand, it increases the level of generation of superoxide anion-radicals. Cluster analysis, presented in a combined dendrogram, showed that royal pastel (b/b) and sapphire (a/a р/р) minks, the farthest from standard (+/+), had the greatest modulating effects. It is reasonable to suggest that such effects contributed to the genetic plasticity of American mink in the course of colonization of North America and then during mink introduction in Northern Eurasia and South America.

About The Authors:

S. N. Sergina. Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia, Russian Federation

V. A. Ilyukha. Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia, Russian Federation

I. V. Baishnikova. Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia, Russian Federation

T. N. Ilyina. Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia, Russian Federation


1. Alexandersen S., Larsen S., Aasted B., Uttenthal A., Bloom M.E., Hansen M. Acute interstitial pneumonia in mink kits inoculated with defined isolates of aleutian mink disease parvovirus. Vet. Pathol. 1994;31:216-228.

2. Bears R.F., Sizes I.N. A spectral method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195(1):133-140.

3. Beckman K.B., Ames B.N. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547-581.

4. Belyaev D.K., Evsikov V.I. Genetics of animal fertility. Report I. The role of coat color mutations on the mink fertility. Genetika (Moscow) — Genetics (Moscow). 1967;(2):21-33.

5. Belyaev D.K., Evsikov V.I., Shumny V.K. Genetic-selection aspects of monohybrid heterosis. Genetika (Moscow) — Genetics (Moscow). 1968;4(12):47-62.

6. Belyaev D.K., Zhelezova A.I. Genetics of animal fertility. Report II. Some physiological aspects of mutant mink reproductivity. Genetika (Moscow) — Genetics (Moscow). 1968;4(1):45-58.

7. Belyaev D.K., Zhelezova A.I. Experience in experimental regulation of fetal viability in minks. Genetika (Moscow) — Genetics (Moscow). 1976;12(6):55-59.

8. Evsikov V.I. Genetic-evolutionary aspects of mammalian homeostasis fertility (mink as a model). Genetika (Moscow) — Russian J. Genet. 1987;23(6):988-1002.

9. Galantsev V.P. Evolyutsiya adaptatsiy nyryayushchikh zhivotnykh. Ekologo- i morfofiziologicheskie aspekty. [Evolution of adaptations in diving animals. Ecologo- and morphophysiological aspects.] Leningrad, Nauka, 1977.

10. Gulevich R.G., Osadchuk L.V., Klotchkov D.V. Endocrine function of gonads in two minks’ genotypes. Zhurnal Evolutsionnoi Biokhimii i Fiziologii — J. Evol. Biochem. Physiol. 1984;20(5):484-487.

11. Hadlow W.J., Race R.E., Kennedy R.C. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink. Infection and Immunity. 1983;41(3):1016-1023.

12. Halliwell B. Free radicals and antioxidants: a personal view. Nutr. Rev. 1994;52(8):253-265.

13. Il’ina T.N., Ilyukha V.A., Kalinina S.N., Gorlyakova N.A., Belicheva L. A. The influences of genotype on seasonal changes of antioxidant system and lactate dehydrogenase isoenzymes spectrum in American mink (Mustela vison Schreber, 1777). Informatsionnyi Vestnik VOGiS — The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2007;11(1):145-154.

14. Kharlamova A.V., Trapezov O.V. The pleiotropic effect of Black crystal mutation on the reproductivity in the American mink (Mustela vison). Genetika (Moscow) — Genetics (Moscow). 1999;35(6): 765-770.

15. Kitabchi A.E., Challoner D.R., Williams R.H. Respiration and lipid peroxidation in tocopherol deficient rat hearts. Proc. Soc. Exp. Biol. Med. 1968;127:647-650.

16. Klinger W., Karge E., Kretzschmar M., Rost M., Schulze H.P., Dargel R., Reinemann C., Rein H. Luminol- and lucigenin-amplified chemiluminescence with rat liver microsomes. Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyla-phenyl-nitrone, copper-ions and a copper complex, catalase, su-peroxide dismutase, hexobarbital and aniline. Exp. Toxicol. Pathol. 1996;48(5):447-460.

17. Koldaeva E.M., Milovanov L.V., Trapezov O.V. Porody pushnykh zverey i krolikov [Breeds of fur animals and rabbits]. Moscow, KolosS, 2003.

18. Makridina K.V. Heat production in standard and coat color minks. Uchenye zapiski Petrozavodskogo universiteta — Scientific notes of Petrozavodsk University. 1967;XV(4):39-46.

19. Menshchikova E.B., Lankin V.Z., Zenkov N.K., Bondar I.A., Krugovykh N.F., Trufakin V.A. Okislitelnyy stress. Prooksidanty i antioksidanty [Oxidative stress. Prooxidants and antioxidants.] Moscow, Slovo, 2006.

20. Mink production. Ed. Joergensen G. Denmark: Scientifur, 1985.

21. Misra H.P., Fridovich F. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247(10):3170-3175.

22. Ness N. Abnormalities of the female genital organs in mink heterozygous for the Heggedal factor (shadow factor). J. Acta Veterin. Scand. 1965;15:65-99.

23. Ness N., Einarson E., Lohi O., Joergensen G. Beautiful fur animals and their color genetics. Scientifur, 1988.

24. Popova N.K., Nikulina E.M., Voitenko N.N., Kulikov A.V., Avgustinovich D.F., Trapezov O.V. The one-locus silver-blue fur color mutation (p/p) in mink affects the dopamine system of the brain. Genetika (Moscow) — Russian J. Genet. 1996;32(3):452-454.

25. Popova N.K., Voitenko N.N., Kulikov A.V., Vyshnevitskaya G.V., Trapezov O.V., Kharlamova A.V. The pleiotropic effect of one-locus (p/p) and two-locus (a/a p/p) mutations of mink coat color genes on serotonin metabolism in the brain. Genetika (Moscow) — Genetics (Moscow). 1994;30(11):1513-1515.

26. Prasolova L.A., Tikhomirov I.B., Vsevolodov E.B., Latypov I.F., Trapezov O.V. Phenogenetic analysis of new coat color pigmentation in the American mink (Mustela vison Schr.) and its combination with others. Genetika (Moscow)- Genetics (Moscow). 1994;30(2):255-260.

27. Prasolova L.A., Trapezov O.V. Effect of mutations affecting coat color on the hair pigmentation in the American mink (Mustela vison Schreber, 1777). Genetika (Moscow) — Genetics (Moscow). 2007;43(7): 982-986.

28. Ringer R.K., Aulerich R.J., Pittman R., Cogger E.A. Cardiac output, blood pressure, blood volume and other cardiovascular parameters in mink. J. Anim. Sci. 1974;38:121-123.

29. Sedlak J., Lindsay R.H. Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968;25:192-205.

30. Shackelford R.M. Mutations in mink. Trans Wis. Acad. Sci. Art. Lett. 1941;34-45.

31. Skurihin V.N., Dvinskaya L.M. Estimation of a-tocopherol and retinol in blood plasma of farm animals via microcolumn high performance liquid chromatography method. Selskohozyastvennaya biologiya — Agricultural Biology. 1989;(4):127-129.

32. Sravnitelnaya fiziologiya zhivotnykh [Comparative Physiology of Animals]. Ed. L. Prosser. Moscow, Mir, 1977.

33. Svechkina E.B., Tyutyunnik N.N. Changes in digestive enzymes’ activities in different genotypes of American mink (Mustela vison Schr., 1777) during industrial domestication. Informatsionnyi Vestnik VOGiS -The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2007;11(1):99-108.

34. Trapezov O.V. The regulation role of genes of behavior in coat color formation in american mink (Mustela vison Schr., 1777). Informatsionnyi Vestnik VOGiS — The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008;12(1/2):63-82.

35. Trapezov O.V., Markel A.I. The effect of coat color mutations on the adrenal function at the stress starvation in American mink. Genetika (Moscow) — Genetics (Moscow). 1989;25(3):508-512.

36. Trapezov O.V., Trapezova L.I., Alekhina T.A., Klochkov D.V., Ivanov Yu.N. Effects of monorecessive and double recessive mutations affecting coat color on the monoamine content of the brain of the American mink (Mustela vison Schreber, 1777). Genetika (Moscow) — Genetics (Moscow). 2009;45(12):1641-1645.

37. Trapezov O.V., Trapezova L.I., Sergeev E.G. Effect of coat color mutations on behavioral polymorphism in farm populations of American minks (Mustela vison Schreber, 1777) and sables (Martes zibellina L., 1758). Genetika (Moscow) — Genetics (Moscow). 2007;37(4): 516-523.

38. Unzhakov A.R., Kozhevnikova L.K., Ilyukha V.A., Meldo H.I., Tyutyunnik N.N. Specificity of lactate degydrogenase isoenzyme spectra of white hedlund mink. Informatsionnyi Vestnik VOGiS — The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2007;11(1):139-144.

39. Uzenbaeva L.B., Golubeva A.G., Ilyukha V.A., Tyutyunnik N.N. The structure features of blood leucocytes in different genotypes of minks (Mustela vison Schr., 1777). Informatsionnyi Vestnik VOGiS — The Herald of Vavilov Society for Geneticists and Breeding Scientists.2007;11(1):155-161.

40. Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biomembranakh [Lipid peroxidation in biomembranes]. Moscow, Nauka, 1972.

41. Voitenko N.N., Trapezov O.V. Effect of four coat color mutations (CR,S, SH, and h) on brain monoamine oxidase in mink. Genetika (Moscow) — Genetics (Moscow). 2001;37(4):1-5.

42. Wilhelm Filho D., Sell F., Ribeiro L., Ghislandi M., Carrasquedo F., Fraga C.G., Wallauer J.P., Simoes-Lopes P.C., Uhart M.M. Comparison between the antioxidant status of terrestrial and diving mammals. Comp. Biochem. Physiol. A. 2002;133:885-892.

43. Zvereva L.P., Belyaev D.K. Phenotypic analysis of pigmentation in mutants of American mink (Mustela vison Schreber, 1777). I. Effect of the steelblue and silver blue mutations and their compound on the distribution of hair pigmentation. Genetika (Moscow) — Genetics (Moscow). 1976;12(2):97-103.

44. Zvereva L.P., Belyaev D.K., Privalova G.N. Phenotypic analysis of pigmentation in mutants of American mink (Mustela vison Schreber, 1777). II. Effect of the Aleutian mutation and the interaction between the Aleutian and silver blue coat colour genes in the genotype of sapphire mink. Effect of the «Stewart» factor on hair pigmentation. Genetika (Moscow) — Genetics (Moscow). 1976;12(2):104-109.

This entry was posted in Tom 19-3. Bookmark the permalink.