Development of new SSR markers for homoeologous WFZP loci based on the study of structure and location of microsatellites in gene-rich regions of chromosomes 2AS , 2BS, 2DS. O. B. Dobrovolskaya, C. Pont, Yu. L. Orlov, J. Salse

Abstract:

Microsatellites, or simple sequence repeats (SSRs), are ubiquitous in genomes of eukaryotes, including plant genomes. The structure and location of SSR loci determine their potential as molecular genetic markers and may have impact on the potential function of microsatellites in important biological processes. Identification and study of the distribution of SSR loci in gene-rich regions of the bread wheat genome and development of novel SSR markers based on these data are of practical interest, being important for the study of bread wheat genome organization. Bread wheat BACclone sequences containing homoeologous WFZP genes that control spikelet development served as the base for the identification and localization of SSR loci in generich regions of chromosomes 2AS, 2BS, and 2DS. It was found that di- and trinucleotide motifs were predominant. The most common dinucleotide motifs were AG and GA/TC. They were distributed in noncoding regions of genes, transposable elements (TEs) and unannotated sequences. Most identified trinucleotide motifs were associated with transposable elements. Homoeologous SSR loci were found in either genes or unannotated sequences. Comparison of these loci showed that the divergence in their structure was caused both by changes in repeat number and nucleotide substitutions. New SSR markers were developed and mapped. On the genetic maps of chromosomes 2A, 2B и 2D, they collocated with the WFZP-A-B-D genes. Thus, they can be used for gene tagging in molecular research and in marker-assisted selection.

About The Authors:

O. B. Dobrovolskaya. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation

C. Pont. Institut National de la Recherche Agronomique-Université Blaise Pascal Unité Mixte de Recherche-1095, 63100 Clermont-Ferrand cedex 2, France, Russian Federation

Yu. L. Orlov. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation

J. Salse. Institut National de la Recherche Agronomique-Université Blaise Pascal Unité Mixte de Recherche-1095, 63100 Clermont-Ferrand cedex 2, France, Russian Federation

References:

1. Choulet F., Alberti A., Theil S., Glover N., Barbe V., Daron J. Pingault L., Sourdille P., Couloux A., Paux E., Leroy P., Mangenot S., Guilhot N., Le Gouis J., Balfourier F., Alaux M., Jamilloux V., Poulain J., Durand C., Bellec A., Gaspin C., Safar J., Dolezel J., Rogers J., Vandepoele K., Aury J.M., Mayer K., Berges H., Quesneville H., Wincker P., Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721-1-7. DOI: 10.1126/science.1249721

2. Choulet F., Wicker T., Rustenholz C., Paux E., Salse J., Leroy P.,Pingault L., Sourdille P., Couloux A., Paux E., Leroy P., Mangenot S., Guilhot N., Le Gouis J., Balfourier F., Alaux M., Jamilloux V., Poulain J., Durand C., Bellec A., Gaspin C., Safar J., Dolezel J., Rogers J., Vandepoele K., Aury J.M., Mayer K., Berges H., Quesneville H., Wincker P., Feuillet C. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 2010;22:1686-701. DOI:10.1105/tpc.110.074187

3. Dobrovolskaya O., Boeuf C., Salse J., Pont C., Sourdille P. Bernard M., Salina E. Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. Theor. Appl. Genet. 2011;123:1145-1157. DOI: 10.1007/s00122-011-1655-z

4. Dobrovolskaya O., Martinek P., Voylokov A.V., Korzun V., Röder M.S., Börner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet. 2009;119:867-874. DOI: 10.1007/s00122-009-1095-1

5. Dobrovolskaya O., Pont C., Sibout R., Martinek P., Badaeva E. Chosson A., Watanabe N., Prat E., Gautier N., Gautier V., Poncet C., Orlov Y.L., Krasnikov A.A., Bergès H., Salina E., Laikova L., Salse J. FRIZZY PANICLE drives supernumerary spikelets in bread wheat (T. aestivum L.). Plant Physiol. 2015;167:189-199. DOI: 10.1104/pp.114.250043

6. Dobrovolskaya O.B., Sourdille P., Bernard M., Salina E.A. Chromosome synteny of the A genome of two evolutionary wheat lines. Genetika (Moscow) — Genetics (Moscow). 2009;45:1548-1555.

7. Erayman M., Sandhu D., Sidhu D., Dilbirligi M., Baenziger P.S., Gill K.S. Demarcating gene-rich regions of the wheat genome. Nucl. Acids Res. 2004;32:3546-3565. DOI: 10.1093/nar/gkh639

8. Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding. Eds R.K. Varshney, R. Tuberosa. Genomics Assisted Crop Improvement, V. 2. Genomics Applications in Crops. Springer, Dordrecht, the Netherlands. 2007.

9. Grover A., Aishwarya V., Sharma P.C. Biased distribution of microsatellite motifs in the rice genome. Mol. Gen. Genom. 2007;277:469-480. DOI 10.1007/s00438-006-0204-y

10. IWGSC (International Wheat Genome Sequencing Consortium). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788-1-11. DOI:10.1126/science.1251788

11. Kosambi D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943;12:172-175.

12. Lagercrantz U., Ellegren H., Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucl. Acids Res. 1993;21:1111-1115.

13. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1:174-181.

14. Leonova I.N., Kalinina N.P., Budashkina E.B., Röder M.S. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russian J. Genet. 2008;44:1431-1437.

15. Li Y.-C., Korol A.B., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 2002;11:2453-2465. DOI: 10.1046/j.1365-294X.2002.01643.x

16. Maia L.C.D., Palmieri D., Souza V.Q.D., Kopp M.M., CarvalhoF.I.F.D., Costade Oliveira A. SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics. 2008;412696. DOI: 10.1155/2008/412696

17. Morgante M., Hanafey M., Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 2002;30:194-200. DOI: 10.1038/ng822

18. Nicot N., Chiquet V., Gandon B., Amilhat L., Legeai F., Leroy F., Bernard M., Sourdille P. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet. 2004;109:800-805. DOI 10.1007/s00122-004-1685-x

19. Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P. Korol A., Michalak M., Kianian S., Spielmeyer W., Lagudah E., Somers D., Kilian A., Alaux M., Vautrin S., Bergis H., Eversole K., Appels R., Safar J., Simkova H., Dolezel J., Bernard M., Feuillet C. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322:101-104. DOI: 10.1126/science.1161847

20. Ramsay L., Macaulay M., Cradle L., Morgante M., Ivanissevich S.D., Maestri E., Powell W., Waugh R. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 1999;17:415-425. DOI: 10.1046/j.1365-313X.1999.00392.x

21. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998;149:2007-2023.

22. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization. Funct. Integr. Genomics. 2006;6:71-80. DOI 10.1007/s10142-005-0001-4

23. Sia E.A., Jinks-Robertson S., Petes T. Genetic control of microsatellite stability. Mutat. Res. 1997;383:61-70.

24. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res. 1984;12:4127-4138.

25. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential. Genome Res. 2001;11:1441-1452. DOI: 10.1101/gr.184001

26. Thuillet A.C., Bru D., David J., Roumet P., Santoni S., Sourdille P., Bataillon T. Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum Desf. Mol. Biol. Evol. 2002;19:122-125.

27. Wang Y., Yang C., Jin Q., Zhou D., Wang S., Yu Y., Yang L. Genomewide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet. 2015. DOI: 10.1186/s12863-015-0178-z

28. Webster M.T., Smith N.G.C., Ellegren H. Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc. Natl Acad. Sci. USA. 2002;99:8748-8753. DOI:10.1073/pnas.122067599

29. Wierdl M., Dominska M., Petes T.D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997;140:769-779.

This entry was posted in Tom 19-3. Bookmark the permalink.