Prospects of the use of wild relatives for pea (Pisum sativum L.) breeding. O. E. Kosterin


The current global climate change results in shift and shrinkage of ranges of crop cultivation. The potential of crop wild relatives as an important source of genetic diversity for breeding is underestimated. Wild relatives of pea include the species P. fulvum and the subspecies P. sativum subsp. elatius, whereas wild representatives of P. abyssinicum are unknown. Wild peas are characterized by spontaneous dehiscence of pods and ballistic seed spread. The cultivated pea represents just a phyletic lineage within P. sativum. Pea crop wild relatives are promising with respect to: (1) resistance to pests and pathogens; (2) resistance to abiotic stress; (3) nutritional value; (4) agrotechnical advantages, e.g. branching, ability of hibernation etc.; (5) symbiotic nitrogen fixation (almost no data); etc. P. fulvum is resistant to pea weevil, rust, powdery mildew and ascochyta blight. Some P. sativum subsp. elatius are resistant to nematodes, broomrape, powdery mildew, Fusarium wilt, powdery mildew, root rot, ascochyta blight and white wilt. P. sativum subsp. elatius responds to weevil oviposition by neoplastic pustules of the pod wall controlled by the locus Np. Pisum abyssinicum shows resistance to nematodes and bacterial blight. P. fulvum has a high rate of root growth. Some P. sativum subsp. elatius accessions have lowered transpiration rates, and an accession from Italy survives at –20оС. Analyses of quantitative trait loci have been carried out for resistance of P. fulvum to pea weevil, powdery mildew and rust and for resistance of P. sativum subsp. elatius to broomrape, bacterial blight and ascochyta blight. Aryamanesh et al. (2012) obtained five introgression lines with pea weevil resistance transferred from P. fulvum to P. sativum. The practical use of wild peas is hampered by insufficient awareness of their diversity and differences from cultivated peas. Studies of useful traits of wild peas and their natural diversity, which is rapidly vanishing, should be intensified.

About The Author:

O. E. Kosterin. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation


1. Bogdanova V.S., Galieva E.R. Narusheniya meĭoza kak proyavlenie yaderno-tsitoplazmaticheskoĭ nesovmestimosti pri skreshchivanii podvidov posevnogo gorokha. Genetika. 2009;45(5):711-716.

2. Borisov A.Yu., Shtark O.Yu., Zhukov V.A., Naumkina T.S., Pinaev A.G., AkhmetovaG.A.,VoroshilovaV.A.,OvchinnikovaE.S.,RychagovaT.S., Tsyganov V.E., Zhernakov A.I., Kuznetsova E.V., Grishina O.A., Sulima A.S., Fedorina Ya.V., Chebotar’ V.K., Bisseling T., Lemanso F., Dzhianinazi-Pirson V., Rate P., Sankhuan Kh., Stougaard Ĭ., Berg G., Makfi K., Ellis N., Tikhonovich I.A. Vzaimodeĭstvie bobovykh s poleznymi pochvennymi organizmami: ot genov rasteniĭ k sortam. S.-kh. biologiya. 2011;3:41-47.

3. Vavilov N.I. Tsentry proiskhozhdeniya kul’turnykh rasteniĭ. Tr. po prikl. botan. i selektsii. 1926;16(2):248.

4. Vavilov N.I. Mirovye tsentry sortovykh bogatstv (genov) kul’turnykh rasteniĭ. Izv. GIOA. 1927;5(5):339-351.

5. Vavilov N.I. Problema proiskhozhdeniya kul’turnykh rasteniĭ v sovremennom ponimanii. Dostizheniya i perspektivy v oblasti prikladnoĭ botaniki, genetiki i selektsii. L.: Izd-vo VIPBiNK i GIOA, 1929:11-22.

6. Vilkova N.A., Kolesnichenko L.I., Shapiro I.D. Metodicheskie rekomendatsii po vyyavleniyu ustoĭchivosti sortov gorokha k gorokhovoĭ zernovke. L.: Vsesoyuz. in-t rastenievodstva VASKhNIL, 1977.

7. Govorov L.I. Gorokh Afganistana. Tr. po prikl. botan., genet. i selektsii. 1928;19(2):497-522.

8. Govorov L.I. Gorokh. Kul’turnaya Flora SSSR. T. IV. Zernovye bobovye. M.; L.: Gos. izd-vo sovkhoz. i kolkh. lit-ry, 1937:229-336. Goncharov N.P. Nikolaĭ Ivanovich Vavilov. Novosibirsk: Izd-vo SO RAN, 2014.

9. Goncharov N.P., Glushkov S.A., Shumnyĭ V.K. Domestikatsiya zlakov Starogo Sveta: poisk novykh podkhodov dlya resheniya staroĭ problemy. Zhurn. obshch. biologii. 2007;68(2):126-148.

10. Zhukovskiĭ P.M. Kul’turnye rasteniya i ikh sorodichi, 3-e izd. L.: Kolos, 1971.

11. Makasheva R.Kh. Kul’turnaya flora SSSR. L.: Kolos, 1979. T. IV. Takhtadzhyan A.L. Floristicheskie oblasti Zemli. L.: Nauka, 1978. Shlykov G.R. Introduktsiya rasteniĭ. M.; L.: Sel’khozgiz, 1936.

12. Shlykov G.R. Introduktsiya rasteniĭ i genetika. Spornye voprosy genetiki i selektsii. M.: VASKhNIL, 1937:218-230.

13. Abbo S., Lev-Yadun S., Gopher A. Agricultural origins: centres and non-centres; a Near Eastern reapprisal. Crit. Rev. Plant. Sci. 2010;29: 317-328.

14. Abbo S., Lev-Yadun S., Gopher A. Origin of Near Eastern plant domestication: homage to Claude Levi-Strauss and ‘La Penseaґ e Sauvage’. Genet. Res. Crop. Evol. 2011;58:175-179.

15. Abbo S., Lev-Yadun S., Gopher A. Plant domestication and crop evolution in the Near East: on events and process. Crit. Rev. Plant. Sci. 2012;31:241-257.

16. Abbo S., Lev-Yadun S., Heun M., Gopher A. On the ‘lost crops’ of the neolithic Near East. J. Exp. Bot. 2013;64:815-822.

17. Ali S.M., Sharma B., Ambrose M.J. Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica. 1994;73:115-126.

18. Allaby R.G., Fuller D.Q., Brown T.A. The genetic expectation of the protracted model of the origin of domesticated crops. Proc. Natl Acad. Sci. USA. 2008;105:13982-13986.

19. Ambrose M.J., Ellis T.H.N. Ballistic seed dispersal and associated seed shadow in wild Pisum germplasm. Pisum Genetics. 2008;40:5-10. Aryamanesh N., Byrne O., Hardie D.C., Khan T., Siddique K.H.M.,

20. Yan G. Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci. 2012;63: 612-618.

21. Aryamanesh N., Zeng Y., Byrne O., Hardie D.C., Al-Subhi A.M., Khan T., Siddique K.H.M., Yan G. Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor. Appl. Genet. 2014; 127:489-497.

22. Asouti E., Fuller D.Q. From foraging to farming in the southern Levant: the development of the Epipaleolithic and Pre-pottery Neolithic plant managing strategies. Veg. History Archaeobot. 2012;21:149-162.

23. Baranger A.G., Aubert G., Arnau G., Lainé A.L., Deniot G., Potier J., Weinachter C., Lejeune-Hénaut I., Lallemand J., Burstin J. Genetic diversity within Pisum sativum using protein and PCR based markers. Theor. Appl. Genet. 2004;108:1309-1321.

24. Barilli E., Satovic Z., Rubiales D., Torres A.M. Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica. 2010;175:151-159.

25. Barilli E., Sillero J.C., Moral A., Rubiales D. Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi). Plant Breeding. 2009;128:665-670.

26. Bastianelli D., Grosjean F., Peyronnet C., Duparque M., Regnier J.M. Feeding value of pea (Pisum sativum L.). Chemical composition of different categories of pea. Anim. Sci. 1998;67:609-619.

27. Ben-Ze’ev N., Zohary D. Species relationship in the genus Pisum L. Israel J. Botany. 1973;22:73-91.

28. Berdnikov V.A., TrusovY.A., Bogdanova V.S., Kosterin O.E., Rozov S.M., Nedel’kina S.V., Nikulina Y.N. The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L. Pisum Genetics. 1992;24:37-39.

29. Bogdanova V.S., Galieva E.R., Yadrikhinskiy A.K., Kosterin O.E. Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.). Theor. Appl. Genet. 2012;124:1503-1512.

30. Bogdanova V.S., Kosterin O.E., Yadrikhinskiy A.K. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theor. Appl. Genet. 2014;127:1163-1172.

31. Brown T.A., Jones M.K., Powell W., Allaby R.G. The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology and Evolution. 2009;24:103-109.

32. Byrne O.M., Hardie D.C., Khan T.N., Yan G. Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Austr. J. Agric. Res. 2008;59:854-862.

33. Carrillo E., Rubiales D., Pérez-de-Luque A., Fondevilla S. Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur. J. Plant Pathol. 2013;135:761-769.

34. Carrillo E., Satovic Z., Aubert G., Boucherot K., Rubiales D., Fondevilla S. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep. 2014;33:1133-1345.

35. Clement S.L., Hardie D.C., Elberson L.R. Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci. 2002;42: 2167-2173.

36. Clement S.L., McPhee K.E., Elberson L.R., Evans M.A. Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breeding. 2009; 128:478-485.

37. Conicella C., Errico A. Karyotpe variations in Pisum sativum ect. abyssinicum. Caryologia. 1990;43:87-97.

38. Cooper L.D., Doss R.P., Price R., Peterson K., Oliver J.E. Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J. Experim. Botany. 2005;56: 1229-1237.

39. Coyne C.J., McGee R.J., Redden R.J., Ambrose M.J., Furman B.J., Miles C.A. Genetic ajustment to changing climates: pea. (Eds S.S. Yadav, R.J. Redden, J.L. Hatfield, H. Lotze-Campen, A.E. Hall). Crop Adaptation to Climate Change, Wiley-Blackwell, Oxford, UK, 2011: 238-250.

40. Coyne C.J., McClendon M.T., Walling J.G., Timmerman-Vaughan G.M., Murray S, Meksem K., Lightfoot D.A., Shultz, J.L., Keller K.E., Martin R.R., Inglis D.A., Rajesh P.N., McPhee K.E., Weeden N.F.,

41. Grusak N.A., Li C.-M., Storlie E.W. Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome. 2007;50:871-875.

42. Davis H. Materials for a flora of Turkey. XIX. Leguminosae: Vicieae. Notes Roy. Bot. Garden Edingurgh. 1969;29:311-320.

43. Davis H. Flora of Turkey and the East Aegean Islands. V. 3. Edinbourgh, 1970.

44. Domoney C., Casey R., Turner L., Ellis N. Pisum lipoxygenase genes. Theor. Appl. Genet. 1991;81:800-805.

45. Doss R.P. Treatment of pea pods with Bruchin B results in up-regulation of a gene similar to MtN19. Plant Physiol. Biochemistry. 2005;43:225-231.

46. Doss R.P., Oliver J.E., Proebsting W.M., Potter S.W., Kuy S., Clement S.L., Williamson T., Carney J.R., DeVilbiss E.D. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc. Natl Acad. Sci. USA. 2000;97:6218-6223.

47. Ellis T.H.N., Poyser S.J., Knox M.R., Vershinin A.V., Ambrose M.J. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. General Genet. 1998;260:9-19.

48. Errico A., Conicella C., Venora G. Karyotype studies on Pisum fulvum and Pisum sativum using a chromosome image analysis system. Genome. 1991;34:105-108.

49. Fondevilla S., Almeida N.F., Satovic Z., Rubiales D., Patto M.C.V., Cubero J.I., Torres A.M. Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica. 2011;182:43-52.

50. Fondevilla S., Ávila C.M., Cubero J.I., Rubiales D. Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breeding. 2005;124:313-315.

51. Fondevilla S., Cubero J.I., Rubiales D. Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. (Eds B. Tivoli, A. Baranger, F.J. Muehlbauer, B.M. Cooke). Ascochyta blights of grain legumes. Springer, Netherlands, 2007a:53-58.

52. Fondevilla S., Cubero J.I., Rubiales D. Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breeding. 2010;130:281-282.

53. Fondevilla S., Martín-Sanz A., Satovic Z., Fernández-Romero M.D., Rubiales D., Caminero C. Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv syringae in pea (Pisum sativum L.). Euphytica. 2012;186:805-812.

54. Fondevilla S., Satovic Z., Rubiales D., Moreno M.T., Torres A.M. Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum. Mol. Breed. 2008;21: 439-454.

55. Fondevilla S., Torres A.M., Moreno M.T., Rubiales D. Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum, a Wild Relative of Pea. Breeding Science. 2007b;57:181-184.

56. Ford-Lloyd B.V., Schmidt M., Armstrong S.J., Barazani O., Engels J., Hadas R., Hammer K., Kell S.P., Kang D., Khoshbakht K., Li Y., Long C., Lu B.-R., Ma K., Nguyen V.T., Qiu L., Ge S., Wei W., Zhang Z., Maxted N. Crop wild relatives — undervalued, underutilized and under threat? BioScience. 2011;61:559-565.

57. Fuller D.Q. Contrasting pattern of crop domestication and domestication rates: recent archaeological insights from the Old World. Ann. Bot. 2007;100:903-924.

58. Fuller D.Q., Willcox G., Allaby R.G. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol. 2011;43:628-658.

59. Fuller D.Q., Willcox G., Allaby R.G. Early agricultural pathways: moving outside the ‘core area’ hypothesis in Southwest Asia. J. Exp. Bot. 2012;63:617-633.

60. Geurts R., Heidstra R., Hadri A.E., Downie J.A., Franssen H., van Kammen A.B., Bisseling T. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 1997;115:351-359.

61. Glémin S., Battailon T. A comparative view of the evolution of grasses under domestication. New Phytol. 2012;183:273-290.

62. Gopher A., Abbo S., Lev-Yadun S. The ‘when’, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant. Documenta Praehistorica. 2001;27:49-62.

63. Hammer K. The domestication syndrome. Kulturphlanze. 1984;32: 11-34.

64. Hance S.T., Grey W., Weeden N.F. Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius. Pisum Genetics. 2004;36: 9-13.

65. Harlan J.R. Agricultural origin: centres and noncentres. Science. 1971;174:468-474.

66. Hatfield J.L. Changing climate in North America: implications for crops. (Eds S.S. Yadav, R.J. Redden, J.L. Hatfield, H. Lotze-Campen, A.E. Hall). Crop Adaptation to Climate Change. Wiley-Blackwell, Oxford, UK, 2011:57-65.

67. Heng L., Vincken J.P., van Koningsveld G., Legger A., Gruppen H., van Boekel T., Roozen J., Voragen F. Bitterness of saponins and their content in dry peas. J. Sci. Food and Agriculture. 2006;86: 1225-1231.

68. Hoey B.K., Crowe K.R., Jones V.M., Polans N.O. A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theor. Appl. Genet. 1996;92:92-100.

69. Holloway G.J., Bretag T.W., Price T.V. The epidemiology and management of bacterial blight (Pseudomonas syringae pv. pisi) of field pea (Pisum sativum) in Australia: a review. Aust. J. Agric. Res. 2007;58:1086-1099.

70. Jing R., Johnson R., Seres A., Kiss G., Ambrose M.J., Knox M.R., Ellis T.H.N., Flavell A.J. Gene-based sequence diversity analysis of field pea (Pisum). Genetics. 2007;177:2263-2275.

71. Jing R., Vershinin A., Grzebota J., Shaw P., Smýkal P., Marshall D., Ambrose M.J., Ellis T.H.N., Flavell A.J. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biol. 2010;10. Art. 44.

72. Kneen B.E., LaRue T.A. Peas (Pisum sativum L.) with strain specificity to Rhizobium leguminosarum. Heredity. 1984;52:383-389.

73. Kosterin O.E., Bogdanova V.S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet. Res. Crop Evol. 2008;55:735-755.

74. Kosterin O.E., Bogdanova V.S. Reciprocal compatibility within the genus Pisum L. as studied in F1 hybrids: 1. Crosses involving P. sativum L. subsp. sativum. Genet. Res. Crop Evol. 2014. DOI:10.1007/s10722-014-0189z (E-pub ahead of print)

75. Kosterin O.E., Zaytseva O.O., Bogdanova V.S., Ambrose M. New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Beib.) Schmahl. Genet. Res. Crop Evol. 2010;57:733-739.

76. Ladizinsky G. Seed dispersal in relation to domestication of Middle East legumes. Economical Botany. 1979;33:284-289.

77. Lamm R. Cytogenetical studies on translocations in Pisum. Hereditas. 1951;37:356-372.

78. Lev-Yadun S., Gopher A., Abbo S. The cradle of agriculture. Science. 2000;288:1602-1603.

79. Lie T.A. Symbiotic nitrogen fixation under stress conditions. Plant and Soil. Special vol. 1971:117-127.

80. Lie T.A. Symbiotic specialization in pea plants: the requirement of specific Rhizobium strains for peas from Afghanistan. Ann. Appl. Biol. 1978;88:462-465.

81. Lie T.A. Gene centres, a source for genetic variants in symbiotic nitrogen fixation: Host induced ineffectivity in Pisum sativum ecotype fulvum. Plant and Soil. 1981;61:125-134.

82. Lie T.A. Host genes in Pisum sativum conferring resistance to European Rhizobium leguminosarum strains. Plant and Soil. 1984;82:415-425. Lie T.A., Göktan D., Engin M., Pijnenborg J., Anlarsal E. Co-evolution of the legume-Rhizobium association. Plant and Soil. 1987;100:171-181.

83. Lobell D.B., Field C.B. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Res. Letters. 2007;2. Art. 014002.

84. Lu J., Knox M.R., Ambrose M.J., Brown J.K.M., Ellis T.H.N. Comparative analysis of genetic diversity in pea assessed by RFLPand

85. PCR-based methods. Theor. Appl. Genet. 1996;93:1103-1111. Marx G.A. New linkage relations for chromosome III of Pisum. Pisum Newslett. 1971;3:18-19.

86. Maxted N., Ambrose M. Peas (Pisum L.). (Eds N. Maxted, S.J. Bennett). Plant Genetic Res. of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture 39, Kluwer Acad. Publ., Dordrecht. 2001:181-190.

87. Maxted N., Kell S.P. Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture. Rome, 2009.

88. Maxted N., Kell S., Ford-Lloyd B., Dulloo E., Toledo Á. Toward the systematic conservation of global crop wild relative diversity. Crop Sci. 2012;52:774-785.

89. McPhee K.E., Tullu A., Kraft J.M., Muehlbauer F.J. Resistance to Fusarium wilt race 2 in the Pisum core collection. J. Amer. Soc. Horticultural Sci. 1999;124:28-31.

90. Murfet I.C., Reid J.B. Developmental mutants. (Eds R. Casey, D.R. Davies). Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford, UK, 1993:165-216.

91. North H., Casey R., Domoney C. Inheritance and mapping of seed lypoxigenase peptides in Pisum. Theor. Appl. Genet. 1989;77: 805-808.

92. Oliver J.E., Doss R.P., Williamson R.T., Carney J.R., DeVilbiss E.D. Bruchins — mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae. Tetrahedron. 2000;56: 7633-7641.

93. Oliver J.E., Doss R.P., Marquez B., DeVilbiss E.D. Bruchins, plant mitogens from weevils: structural requirements for activity. J. Chemical Ecol. 2002;28:2503-2513.

94. Porter L.D., Hoheisel G., Coffman V.A. Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant pathology. 2009;58:52-60.

95. Provvidenti R., Alconero R. Inheritance of resistance to a lentil strain of pea seed-borne mosaic virus in Pisum sativum. J. Heredity. 1988;79:45-47.

96. Provvidenti R., Hampton R.O. Inheritance of resistance to white lupin mosaic virus in common pea. HortScience. 1993;28:836-837.

97. Ramirez-Villegas J., Jarvis A., Läderach P. Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agricult. Forest Meteorol. 2013;170:67-78.

98. Redden R.J., Yadav S.S., Hatfield J.L., Prasanna B.M., Vasal S.K., Lafarge T. The potential of climate change adjustment in crops: a synthesis. Changing climate in North America: implications for crops. (Eds S.S. Yadav, R.J. Redden, J.L. Hatfield, H. Lotze-Campen, A.E. Hall). Crop Adaptation to Climate Change. Wiley-Blackwell, Oxford, UK, 2011:492-414.

99. Schultz J.C., Schonrogge K., Lichtenstein C.P. Plant response to bruchins. Trends Plant Sci. 2001;6:406.

100. Smýkal P., Aubert G., Burstin J., Coyne C.J., Ellis N.T., Flavell A.J., Ford R., Hýbl M., Macas I., Neumann P., McPhee K.E., Redden R.J., Rubiales D., Weller J.L., Warkentin T.D. Pea (Pisum sativum L.) in the genomic era. Agronomy. 2012;2:74-115.

101. Smýkal P., Kenicer G., Flavell A.J., Corander J., Kosterin O., Redden R.J., Ford R., Coyne C.J., Maxted N., Ambrose M.J., Ellis N.T.H. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resources: Characterization and Utilization. 2010; 2010:1-15.

102. Tanno K., Wilcox G. How fast was wild wheat domesticated? Science. 2006;311:1886.

103. Townsend C. Contribution to the flora of Iraq. V. Notes on Leguminosales. Kew Bull. Roy. Bot. Gard. 1968;2:435-458.

104. Valderrama M.R., Roman B., Satovic Z., Rubiales D., Cubero J.I., Torres A.M. Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res. 2004;44:323-328.

105. Vershinin A.V., Allnutt T.R., Knox M.R., Ambrose M.J. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol. Biol. Evol. 2003;20:2067-2075.

106. Vito M.D., Perrino P. Reaction of Pisum spp. to the attacks of Heterodera goettingiana. Nematologia Mediterranea. 1978;6:113-118.

107. Waines J.G. The biosystematics and domestication of peas (Pisum L.). Bul. of the Torrey Botanical Club. 1975;102:385-395.

108. Weeden N.F. Genetic changes accompahying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann. Botany. 2007;100:1017-1025.

109. Weeden N.F., Brauner S.O.R.E.N., Przyborowski J.A. Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell. Mol. Biol. Lett. 2002;7(2B):657-664.

110. Weiss E., Kislev M.E., Hartmann A. Autonomous cultivation before domestication. Science. 2006;312:1608-1610.

111. Wroth J.M. Possible role of wild genotypes of Pisum spp. to enchance ascochyta blight resistence in pea. Austr. J. Expr. Agriculture. 1998; 38:469-479.

112. Yang J.P.W., Johnson W.B., Brewin N.J. A search for peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum. Heredity. 1982;48:197-201.

113. Yang J.P.W., Mattews P. A distinct class of peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum. Heredity. 1982;48:203-210.

114. Zaytseva O.O., Bogdanova V.S., Kosterin O.E. Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene. 2012;504:192-202.

115. Zaytseva O.O., Gunbin K.V., Mglinets A.V., Kosterin O.E. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene. 2015;556:235-244.

116. Zohary M. Geobotanical foundations of the Middle East. I-II. Stutgart: Gustav Fischer Verlag. 1973.

This entry was posted in Tom 19-2. Bookmark the permalink.