Role of the Mucin-2 and Kaiso genes in the social behavior of mice. E. N. Kozhevnikova, K. M. Achasova, V. S. Korostina, E. B. Prokhortchouk, E. A. Litvinova

Abstract:

Inflammatory processes in the gut lead to abnormal­ities in various systems of the body, in particular, to changes in the activity of the central nervous system. Although the mechanisms of these effects are not yet known, it has been demonstrated that intestinal inflammation is associated with anxiety and depression. In this work, we used an animal model of intestinal inflammation, which might result in behavioral changes. The animals used were knock-out mice with double mutations in the Kaiso and Mucin-2 genes. The Kaiso gene encodes a transcription factor that is expressed both in the brain and in the intestine. The Mucin-2 gene encodes a protein that serves as a scaffold for the synthesis of intestinal proteoglycan. Mucin-2 is a major proteoglycan of the intestinal mucus layer and performs multiple functions, including barrier and defensive ones. We used knock-out animals with a mutation in the trans­cription factor Kaiso in tests assessing social behavior, but did not observe any difference between test subjects and wild-type animals. By contrast, double knock-out animals that additionally had a mutation in Mucin-2, a major gene for intestinal proteoglycan, displayed significant changes in social behavior: lower aggression rates and higher rates of courtship behavior toward a male intruder. These results suggest that intestinal homeostasis might have a strong impact on the nervous system of the animals. It remains unclear whether the influence of the two genes is synergistic or the knock-out of the Mucin-2 gene alone determines this behavior in mice. Further investigations will help clarify the matter.

About The Authors:

E. N. Kozhevnikova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

K. M. Achasova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

V. S. Korostina. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Russian Federation, Moscow

E. B. Prokhortchouk. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Russian Federation, Moscow

E. A. Litvinova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

References:

1. Arthur J.C., Perez-Chanona E., Muhlbauer M., Tomkovich S., Uronis J.M., Fan T.J., Campbell B.J., Abujamel T., Dogan B., Rogers A.B., Rhodes J.M., Stintzi A., Simpson K.W., Hansen J.J., Keku T.O., Fodor A.A., Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120-123. DOI: 10.1126/science.1224820

2. Bergstrom K.S., Kissoon-Singh V., Gibson D.L., Ma C., Montero M., Sham H.P., Ryz N., Huang T., Velcich A., Finlay B.B., Chadee K., Vallance B.A. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010;6:e1000902. DOI:10.1371/journal.ppat.1000902

3. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatr. 2013;18:666-673. DOI: 10.1038/mp.2012.77

4. Daniel J.M., Reynolds A.B. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell Biol. 1999;19:3614-3623.

5. Goujon E., Parnet P., Aubert A., Goodall G., Dantzer R. Corticosterone regulates behavioral effects of lipopolysaccharide and interleukin-1 beta in mice. Am. J. Physiol. 1995;269:R154-R159.

6. Lopes E.C., Valls E., Figueroa M.E., Mazur A., Meng F.G., Chiosis G., Laird P.W., Schreiber-Agus N., Greally J.M., Prokhortchouk E., Melnick A. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 2008;68:7258-7263. DOI: 10.1158/0008-5472

7. Moshkin M.P., Tamagawa A., Kolosova I.E., Gerlinskaya L.A., Iwakura Y., Endo Y. Behavioral and endocrine effects of endotoxin in wildtype mice and mice deficient in interleukin 1: sickness behavior or adaptive response. Dokl. Biol. Sci. 2001;379:322-324.

8. Prokhortchouk A., Hendrich B., Jorgensen H., Ruzov A., Wilm M., Georgiev G., Bird A., Prokhortchouk E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes. Dev. 2001;15:1613-1618.

9. Prokhortchouk A., Sansom O., Selfridge J., Caballero I.M., Salozhin S., Aithozhina D., Cerchietti L., Meng F.G., Augenlicht L.H., Mariadason J.M., Hendrich B., Melnick A., Prokhortchouk E., Clarke A., Bird A. Kaiso-deficient mice show resistance to intestinal cancer. Mol. Cell Biol. 2006;26:199-208.

10. Scheinin T., Butler D.M., Salway F., Scallon B., Feldmann M. Validation of the interleukin-10 knockout mouse model of colitis: antitumour necrosis factor-antibodies suppress the progression of colitis. Clin. Exp. Immunol. 2003;133:38-43.

11. Shumskaya V.S., Zhigalova N.A., Prokhorchouk A.V., Prokhorchouk E.B. Distribution of Kaiso protein in mouse tissues. Histochem. Cell Biol. 2015;143:29-43. DOI 10.1007/s00418-014-1261-7

12. Velcich A., Yang W., Heyer J., Fragale A., Nicholas C., Viani S., Kucherlapati R., Lipkin M., Yang K., Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295:1726-1729.

This entry was posted in Tom 19-4. Bookmark the permalink.