Proton magnetic resonance spectroscopy of neurometabo­lites in the hippocampi of aggressive and tame male rats. R. G. Gulevich, A. E. Akulov, S. G. Shikhevich, R. V. Kozhemyakina, I. Z. Plyusnina


Proportions of major neurometabolites with regard to their total amount in the dorsal region of the hippocampus were studied in adult male rats of populations selected for long for increase and absence of aggressivefearful response to humans and in unselected vivarium- kept rats by 1H magnetic resonance spectrometry. Tame and unselected males showed no significant differences in the proportions of any neurometabolites studied. Differences in the proportions of some neurometabolites were found in aggressive vs. tame and in aggressive vs. unselected animals. Tame animals showed higher pro­portions of GABA, N-acetylaspartate (NAA), and choline derivatives and a lower proportion of phosphoryl­ethanolamine than aggressive ones. It is likely that the elevated content of GABA, one of the main inhibitory neurotransmitters in the brain, lowers excita­tion intensity in tame pups in comparison to aggressive ones. In comparison to unselected animals, aggressive rats demonstrated higher proportions of glutamine, aspartate, phosphorylethanolamine, and lactate and lower proportions of NAA and creatinine+ phosphocreatinine. Aspartate is one of the main excitement transmitter, and its elevated proportion in the brain of aggressive rats may favor more intense excitation than in unselected rats. In contrast, the elevated proportion of glutamine in aggressive rats vs. tame rats may be indicative of (1) a metabolic disturbance in the glutamate–glutamine cycle, which links neural and glial cells, and (2) decrease in the activity of glutaminase, the enzyme converting glutamine to glutamate (GABA precursor). The reduced NAA proportion together with the elevated proportion of glutamine in aggressive rats point to impaired energy metabolism in comparison to unselected animals. The differences in neurometabolite patterns between hippocampi of male rats of the unselec­ted and aggressive populations suggest the existence of different neurobiological mechanisms governing aggression manifestation.

About The Authors:

R. G. Gulevich. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

A. E. Akulov. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

S. G. Shikhevich. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

R. V. Kozhemyakina. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

I. Z. Plyusnina. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk


1. Albert F.W., Shchepina O., Winter C., Römpler H., Teupser D., Palme R., Ceglarek U., Kratzsch J., Sohr R., Trut L.N., Thiery J., Morgenstern R., Plyusnina I.Z., Schöneberg T., Pääbo S. Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans. Horm. Behav. 2008;5:413-421.

2. Barros L.F. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013;36(7):396-404. DOI:10.1016/j.tins.2013.04.002

3. Critchley H., Simmons A., Daly E., Russel A., van Amelsvoort T., Robertson D., Glover A., Murphy D. Prefrontal and medial temporal correlates of repetitive violence to self and other. Biol. Psychiat. 2000;47:928-934.

4. Dingledine R., McBain C. Glutamate and Aspartate are Major Excitatory Transmitters in the Brain. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Ed. G.J. Siegel, B.W. Agranoff, R.W. Albers, S.K. Fisher, M.D. Uhler. Philadelphia. 1999. Philadelphia. 1999.

5. Fish E.W., De Bold J.F., Miczek K.A. Aggressive behavior as a reinforcer in mice: activation by allopregnenalone. Psychopharmacology. 2002;163(3/4):459-466.

6. Govindaraju V., Young K., Maudsley A.A. Proton NMR chemical shifts and coupling constant for brain metabolites. NMR Biomed. 2000;13:129-153.

7. Gregg T.R., Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Progr. Neuropsychopharmacol. Biol. Psychiat. 2001;25(1):91-140.

8. Ham B., Sung Y., Kim N., Kim S., Kim J., Kim D., Lee J., Kim J., Yoon S., Lyoo I. Decreased GABA levels in anterior cingulated and basal ganglia in medicated subjects with panic disorder: a proton magnetic resonance spectroscopy (1H MRS) study. Progr. Neuropsychopharmacol. Biol. Psychiat. 2007;31(2):403-411.

9. Hamshere M., Stergiakouli E., Langley K., Martin J., Holmans P., Kent L., Owen M., Gill M., Thapar A., O’Donovan M., Craddock N. Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. Brit. J. psychiat. 2013;203(2):107-111. DOI: 10.1192/bjp.bp.112.117432

10. Herbeck Yu.E., Oskina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal; methyl-supplemented diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Tsitologiya i genetika — Cytology and Genetics (Ukraine). 2010;44(2):45-52.

11. Huang Y., Chen W., Li Y., Wu X., Shi X., Geng D. Effect of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: A study using 1H magnetic resonance spectroscopy. Psychiat. Res.: Neuroimaging. 2010;182:48-52. DOI:10.1016/j.pscychresns.2009.11.009

12. Jenkins B., Klivenyi P., Kustermann E., Andreassen O., Ferrante R., Rosen B., Beal M. Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J. Neurochem. 2000;74(5):2108-2119. DOI:10.1046/j.1471-4159.2000.0742108.x

13. Jinno S. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus. 2011;21(5):467-480. DOI: 10.1002/hipo.20762

14. Khoruzhyk S.A. Magnetic resonance spectroscopy of brain tumors. Onkologicheskiy zhurnal — Oncological Journal (Belarus). 2007;3:51-62.

15. Killeen P., Russel V., Sergeant J. A behavioral neuroenergetics theory A behavioral neuroenergetics theory of ADHD. Neurosci. Biobehav. Rev. 2013;37(4):625-657. DOI: 1016/J.neubiorev.2013.02.011

16. Kohl C., Riccio O., Grosse J., Zanoletti O., Fournier C., Schmidt M.V., Sandi C. Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One. 2013;8(2). DOI: 10.1371/journal.pone. 0056871

17. Li-Byarlay H., Rittschof C., Massey J., Pittendrigh B., Robinson G. Socially responsive effects of brain oxidative metabolism on aggression. PNAS. 2014;111(34):12533-12537. DOI: 10.1073/pnas.1412306111

18. Lieving L.V., Cherek D.R., Lane S.D., Tcheremissine O.V., Nouvion S.O. Effect of acute tiagabine administration on aggressive responses of adult male parolees. J. Psychopharmacol. 2008;22(2):144-152.

19. Maddock R., Buonocore M., Copeland L., Richards A. Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H MRS study. Mol. Psychiat. 2009;14:537-545. DOI:10.1038/

20. Moffett J., Ross B., Arun P., Madhavarao C., Namboodiri A. N-acetylaspartate in the CNS: from neurodiagnostic to neurobiology. Progr. Neurobiol. 2007;81(2):89-131.

21. Monuteaux M., Biederman J., Doyle A., Mick E., Faraone S. Genetic risk for conduct disorder symptom subtypes in an ADHD sample: specificity to aggressive symptoms. J. Am. Acad. Child Adolescent Psychiat.2009;48(7):757-764. DOI: 10.1097/CHI.0b013e3181a5661b

22. Moreno A., Ross B., Blum S. Direct determination of the N-acetyl-l-aspartate synthesis rate in the human brain by 13C MRS and [13C]glucose infusion. J. Neurochem. 2001;27(1):347-350. DOI: 10.1046/j.1471-4159.2001.00282.x

23. Moshkin M.P., Akulov A.E., Petrovski D.V., Saik O.V., Petrovskiy E.D., Savelov A.A., Koptyug I.V. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-D- glucose and lipopolysaccharides. NMR Biomed. 2014;27(4):399-405. DOI: 10.1002/nbm.3074

24. Naumenko E.V., Popova N.K., Nikulina E.M., Dygalo N.N., Shishkina G.T., Borodin P.M., Markel A.L. Behavior, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man. Pharmacol. Biochem. Behav. 1989;33:85-91.

25. Oberg J., Spenger C., Wang F., Andersson A.,Westman E., Scoglund P., Sunnemark D., Norinder U., Klason T., Wahlund L., Lindberg M. Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol. Aging. 2008;29(9):1423-1433.

26. Oskina I.N., Herbeck Yu.E., Shikhevich S.G., Plyusnina I.Z., Gulevich R.G. Alterations in the hypothalamus-pituitary-adrenal and immune systems during selection of animals for tame behavior. Informatsionnyy vestnik VOGIS — Herald of the Vavilov Society for Geneticists and Breeding Scientists. 2008;12(1/2):39-49.

27. Plyusnina I.Z., Oskina I.N. Behavioral and adrenocortical responses to open- field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385.

28. Plyusnina I.Z., Shchepina O., Oskina I., Trut L. Some feutures of learning in the Morris water test in rats selected for responses to humans. Neurosci. Behav. Physiol. 2008;38(5):511-516. DOI: 10.1007/s11055-008-9010-9

29. Plyusnina I.Z., Solov’eva M.Yu. Intraspecific Intermale Aggression in Tame and Aggressive Norway Rats. Zhurnal vysshei nervnoi deyatelnosti im. I.P. Pavlova — I.P. Pavlov Journal of Higher Nervous Activity. 2010;60(2):175-183.

30. Plyusnina I.Z., Solov’eva M.Yu., Oskina I.N. Effect of domestication on aggression in gray rats. Behav. Genet. 2011;41(4):583-592.

31. Raine A., Yang Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 2006;1(3):203-213.

32. Signoretti S., Marmarou A., Tavazzi B., Dunbar J., Amorini A., Lazzarino G., Vagnozzi R. The protective effect of cyclosporin a upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J. Neurotraum. 2004;21(9): 1154-1167. DOI: 10.1089/neu.2004.21.1154

33. Suzuki K., Nishimura K., Sugihara G., Nakamura K., Tsuchiya K.J., Matsumoto K., Takebayashi K., Isoda H., Sakahara H., Sugiyama T., Tsujii M., Takei N., Mori N. Metabolite alterations in the hippocampus of high- functioning adult subject with autism. Intern. J. Neuropscychopharmacol. 2010;13:529-534. DOI:10.1017/S1461145709990952

34. Tang F., Lane S., Korsak A., Paton J., Gourine A., Kasparov S., Teschemacher A. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat. Communications. 2014;5(3284). DOI:10.1038/ncomms4284

35. Tanti A., Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neurosci. 2013;12(252):234-252.

36. Veenema A.H., de Kloet E.R., de Wilde M.C., Roelofs A.J., Kawata M., Buwalda B., Neumann I.D., Koolhaas J.M., Lucassen P.J. Differential effects of stress on adult hippocampal cell proliferation in low and high aggressive mice. J. Neuroendocrinol. 2007;19:489-498. DOI: 10.1111/J.1365-2826.2007.01555.x

37. Wintermantel T.M., Berger S., Greiner E.F., Schultz G. Evaluation of steroid receptor function by gene targeting in mice. J. Steroid Biochem. Mol. Biol. 2005;93(2-5):107-112.

38. Yang Y., Glenn A.L., Raine A., Phil D. Brain abnormalities in antisocial individuals: implications for the law. Behav. Sci. Law. 2008;26:65-83. DOI: 10.1002/bsl.788

This entry was posted in Tom 19-4. Bookmark the permalink.