Abstract:
Presently, the use of bread wheat introgression lines resistant to pathogens in practical breeding
is hampered by the lack of their cytogenetic characteristics, data on the genetic control of disease resistance, and influence of alien genetic material on grain productivity and quality. For the solution of these problems, two wheat–Aegilops speltoides lines, L195 and L200, developed at ARISER and resistant to leaf and stem rusts were studied. These lines were produced by crossing of spring bread wheat cultivars to line L26b-4. Cytogenetic analysis of the lines involved C-banding, meiotic analyses, and FISH with pAs1 and Fat. It allowed the rust resistance genes, efficient against both rust types, to be mapped to a 2D-2S translocation in both lines. Genetic analysis revealed tight linkage of leaf rust resistance genes from Ae. speltoides to gametocidal genes and absence of susceptible plants from the F2 hybrids and subsequent generations. Exceptions were found only in hybrid combinations with lines L2032 and L583: occasional susceptible plants were noted in the F2 and subsequent generations. Evaluation of lines L195 and L200 revealed high resistance to Ug99 + Lr24 (TTKST) and a local Saratov population of stem rust. The prebreeding studies of lines L195 and L200 showed their benefits in breeding for grain productivity in comparison with the recipient cultivar L503 and good bread-making quality. Due to the complex of agronomical traits and high resistance to leaf and stem rusts, lines L195 and L200 can be considered promising donors for commercial bread wheat breeding.
About The Authors:
S. N. Sibikeev. Agricultural Research Institute for South-East Regions of Russia, Saratov, Russia, Russian Federation
E. D. Badaeva. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, Russian Federation
References:
1. Adonina I.G., Petrash N.V., Timonova E.M., Khristov Yu.A., Salina E.A. Sozdanie i izuchenie ustoĭchivykh k listovoĭ rzhavchine liniĭ myagkoĭ pshenitsy s translokatsiyami ot Aegilops speltoides Tausch. Genetika. 2012;48(4):488-494.
2. Gul’tyaeva E.I., Ivanova O.V., Markelova T.S., Sibikeev S.N. Identifikatsiya genov ustoĭchivosti k buroĭ rzhavchine u introgressivnykh sortov i liniĭ myagkoĭ pshenitsy, sozdannykh v NIISKh Yugo-Vostoka. Vestnik zashchity rasteniĭ. 2012;(1):38-44.
3. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoĭ obrabotki rezul’tatov issledovaniĭ rezul’tatov issledovaniĭ). M.: Agropromizdat, 1985.
4. Odintsova I.G., Agafonova N.A., Boguslavskiĭ R.L. Introgressivnye linii myagkoĭ pshenitsy s ustoĭchivost’yu k buroĭ rzhavchine, peredannoĭ ot Aegilops speltoides. Iskhodnyĭ material i problemy selektsii pshenitsy i tritikale: Sb. nauch. tr. po prikl. botan., genet. i selektsii. L.: VIR, 1991a;142:106-110.
5. Odintsova I.G., Boguslavskiĭ R.L., Agafonova N.A. Vozmozhnost’ ispol’zovaniya gametotsidnykh genov v selektsii na ustoĭchivost’ k boleznyam. Tez. dokl. IX Vsesoyuzn. soveshch. po immunitetu rasteniĭ k boleznyam i vreditelyam. Minsk. Sentyabr’ 1991. Minsk, 1991b;2:199-200.
6. Pausheva Z.P. Praktikum po tsitologii rasteniĭ. M.: Agropromizdat., 1988.
7. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 1994;192(1):117-145.
8. Badaeva E.D., Zoshchuk S.A., Paux E., Gay G., Zoshchuk N.V., Roger D., Zelenin A.V., Bernard M., Feuillet C. Fat element — a new marker for chromosome and genome analysis in the Triticeae. Chrom. Res. 2010;18(6):697-709.
9. Kerber E.R., Dyck P.L. Transfer to hexaploid wheat of linked genes for adult — plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome. 1990;33:530-537.
10. Labuschagne M.T., Pretorius Z.A., Grobbelaar B. The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on bread making quality in wheat. Euphytica. 2002;124:65-70.
11. Mago R., Verlin D., Zhang P., Bansal U., Bariana H., Jin Y., Ellis J., Hoxha S., Dundas I. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor. Appl. Genet. 2013 Dec;126(12):2943-55. Doi:10.1007/s00122-013-2184-8.Epub 2013Aug 30
12. McIntosh R.A., Yamazaki Y., Dubcovsky J., Roger J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. Proc. of the 12th Intern. Wheat Genetics Symp., 8-13 September 2013 Yokohama, Japan.
13. Pradhan G.P., Prasad P.V.V., Fritz A.K., Kirkham M.B., Gill B.S. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci. 2012;52:292-304.
14. Roelfs A.P., Singh R.P., Saari E.E. Rust Diseases of Wheat. Concepts and Methods of Disease Management. Mexico, 1992. DF: CIMMYT. Schneider A., Molnar I., Molnar-Lang M. Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19.
15. Sibikeev S.N., Krupnov V.A., Voronina S.A., Elesin V.A. First report of leaf rust pathotypes virulent to highly effective Lrgenes transferred from Agropyron species to bread wheat. Plant Breeding. 1996;115:276-278.
16. Singh RP., Huerta-Espino J.H., Jin Y., Herrera-Foessel S., Njau P., Wanyera R., Ward R.W. Current resistance sources and breeding strategies to mitigate Ug99 threat. Proc. of the 11th Intern. Wheat Genetics Symp., Brisbane, QLD, Australia. 2008.