Applying reproductive technologies and genome resource banking to laboratory animals. S. Ya. Amstislavsky, E. Yu. Brusentsev, T. O. Abramova, D. S. Ragaeva, I. N. Rozhkova, T. N. Igonina, E. A. Kizilova, V. A. Naprimerov, N. Yu. Feoktistoiva

Abstract:

The Genome Resource Bank (GRB) is a repository of frozen biological material, including semen and embryos. Cryo­banking is used in combination with modern reproductive technologies such as rederivation, in vitro culture and embryo transfer. Thirteen mouse and rat strains have been re-derived and 32 are kept frozen in the cryostorage at the Institute of Cytology and Genetics, Novosibirsk. Some other laboratory animal species have been cryopreserved as well. Embryos of two hamster species (Djungarian and Campbell’s) in the genus Phodopus were cryopreserved and the viability of thawed embryos was proved by their successful development in vitro and in vivo (by transfer to a recipient). A positive effect of the granulocyte-macrophage colony-stimulating factor (GM-CSF) was demonstrated with both these Phodopus species. Furthermore, semen of Djungarian (Phodopus sungorus) and Campbell’s (Phodopus campbelli) hamsters, domestic cat (Felis catus), amur cat (Prionailurus bengalensis euptilurus) and bobcat (Lynx rufus) was frozen and cryopreserved. Double staining by SYBR Green/PI and subsequent confocal microscopy demonstrated that more than 40 % of amur cat semen retained viability after cryopreservation. This is the world’s first reported successful freezing of semen of this wild felid (Prionailurus bengalensis euptilurus). This article reviews the results and discusses prospects of using reproductive technologies for conservation of laboratory species.

About The Authors:

S. Ya. Amstislavsky. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

E. Yu. Brusentsev. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

T. O. Abramova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

D. S. Ragaeva. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

I. N. Rozhkova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

T. N. Igonina. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

E. A. Kizilova. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

V. A. Naprimerov. Institute of Cytology and Genetics SB RAS, Russian Federation, Novosibirsk

N. Yu. Feoktistoiva. A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Russian Federation, Moscow

References:

1. Abramova T.O., Kizilova E.A., Maslennikova S.O., Rozhkova I.N., Baiborodin S.I., Brusentsev E.Yu., Naidenko S.V., Amstislavsky S.Ya. Feline semen cryopreservation. Biofizika zhivoy kletki — Biophysics of Living Sell. 2014;10:17-19.

2. Agca Y. Genome resource banking of biomedically important laboratory animals. Theriogenology. 2012;78:1653-1665. DOI: 10.1016/j.theriogenology.2012.08.012

3. Amstislavsky S.Ya., Abramova T.O., Brusentsev E.Yu., Kizilova E.A. Cryopreservation and biodiversity. Priroda — Nature (Moscow). 2014;9:24-33.

4. Amstislavsky S.Ya., Anfinogenova Ya.D. The beast tamed man. Khimiya i zhizn — XXI vek — Chemistry and life: 21st century. 2010;5:28-33.

5. Amstislavsky S., Brusentsev E., Kizilova E., Igonina T., Abramova T., Rozhkova I. Embryo cryopreservation and in vitro culture of preimplantation embryos in Campbell’s hamster (Phodopus campbelli). Theriogenology. 2015;83:1056-1063. DOI: 10.1016/j.theriogenology.2014.12.013

6. Amstislavsky S.Ya., Brusentsev E.Yu., Okotrub K.A., Rozhkova I.N. Embryos and gametes cryopreservation for genetic resources conservation of laboratory animals. Ontogenez — Ontogeny. 2015;46(2):67-81.

7. Amstislavsky S., Lindeberg H., Luvoni G.C. Reproductive technologies relevant to the genome resource bank in Carnivora. Reprod. Dom. Anim. 2012;47:164-175. DOI: 10.1111/j.1439-0531.2011.01886.x

8. Amstislavsky S., Kizilova E., Ternovskaya Y., Zudova G., Lindeberg H., Aalto J., Valtonen M. Embryo development and embryo transfer in the European mink (Mustela lutreola), an endangered mustelid species Reprod. Fertil. Dev. 2006;18:459-467. DOI: 10.1071/RD05135

9. Amstislavsky S., Aalto J., Järvinen M., Lindeberg H., Valtonen M., Zudova G., Ternovskaya Y. Transfer of European mink ( Transfer of European mink (Mustela lutreola) embryos into hybrid recipients. Theriogenology. 2004;62:458-467. DOI: 10.1016/j.theriogenology.2003.10.011

10. Brusentsev E.Yu., Igonina T.N., Abramova T.O., Igonina T., Naprimerov V., Feoktistova N., Amstislavsky S.Cryopreservation, in vitro culture and transfer of preimplantation embryos in Djungarian ham- preimplantation embryos in Djungarian hamster (Phodopus sungorus). Reprod. Dom. Anim. 2015;50:677-683. DOI: 10.1111/rda.12564

11. Brusentsev E.Yu., Igonina T.N., Amstislavsky S.Ya. Traditional and modern approaches to the culturing of preimplantation mammalian embryos in vitro. Ontogenez — Ontogeny. 2014;45(2):73-88.

12. Driscoll C.A., Clutton-Brock J., Kitchener A.C., O’Brien S.J. The taming of the cat. Genetic and archaeological findings hint that wildcats became housecats earlier — and in a different place — than previously thought. Sci. Am. 2009;300:68-75.

13. Elaimi A., Gardner K., Kistnareddy K., Harper J. The effect of GMCSF on development and aneuploidy in murine blastocysts. Hum. Reprod. 2012;27:1590-1595. DOI: 10.1093/humrep/des108

14. Erb G.E., Wynne-Edwards K.E. Preimplantation endocrinology in the Djungarian hamster (Phodopus campbelli): progesterone, estrogen, corpora lutea, and embryonic development. Biol. Reprod. 1993;49: Biol. Reprod. 1993;49: Reprod. 1993;49: 822-830. DOI: 10.1095/biolreprod49.4.822

15. Feoktistova N.Yu. Khomyachki Phodopus. Sistematika, filogeografiya, ekologiya, fiziologiya, povedenie, khimicheskaya kommunikatsiya [Hamsters of the genus Phodopus: systematics, phylogeography, ecology, physiology, behavior, and chemical communication]. Moscow, KMK, 2008. 414 p.

16. Fickel J., Wagener A., Ludwig A. Semen cryopreservation and the conservation of endangered species. Eur. J. Wildl. Res. 2007;53: 81-89.

17. Gregg J.K., Wynne-Edwards K.E. In uniparental Phodopus sungorus, new mothers, and fathers present during the birth of their offspring, are the only hamsters that readily consume fresh placenta. Dev. Psychobiol. 2006;48:528-536. DOI: 10.1002/dev.20174

18. Griffin B., Baker H.J. Domestic cats as laboratory animals. Laboratory Animal Medicine. N.Y.: Acad. Press, 2002.

19. Landel C.P. Archiving mouse strains by cryopreservation. Lab. Anim. 2005;34:50-57.

20. Mazur P., Leibo S.P., Seidel G.E.Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol. Reprod. 2008;78:2-12. DOI: 10.1095/biolreprod.107.064113

21. Miyoshi K., Abeydeera L.R., Okuda K., Niwa K. Effects of osmolarity and amino acids in a chemically defined medium on development of rat one-cell embryos. J. Reprod. Fertil. 1995;103:27-32. DOI:10.1530/jrf.0.1030027

22. Nieder G.L., Caprio T.L. Early embryo development in the Siberian hamster (Phodopus sungorus). Mol. Reprod. Dev. 1990;27:224-229. 1990;27:224-229.

23. Pukazhenthi B.S., Neubauer K., Jewgenow K., Howard J., Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives. Theriogenology. 2006;66:112-121. DOI:10.1016/j.theriogenology.2006.03.020

24. Rall W.F., Schmidt P.M., Lin X., Brown S.S., Ward A.C., Hansen C.T. Factors affecting the efficiency of embryo cryopreservation and rederivation of rat and mouse models. ILAR J. 2000;41:221-227. DOI:10.1093/ilar.41.4.221

25. Robertson S.A., Sjtsblom C., Jasper M.J., Norman R.J., Seamark R.F. Granulocyte-macrophage colony-stimulating factor promotes glucose transport and blastomere viability in murine preimplantation embryos. Biol. Reprod. 2001;64:1206-1215. DOI: 10.1095/biolreprod64.4.1206

26. Saragusty J., Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011; 141:1-19. DOI: 10.1530/REP-10-0236

27. Schini S.A., Bavister B.D. Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 1988;39:1183-1192. DOI: 10.1095/biolreprod39.5.1183

28. Steinlechner S., Stieglitz A., Ruf T. Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses. J. Biol. Rhythms. 2002;17:248-258. DOI:10.1177/074873040201700308

29. Yoshiki A., Ike F., Mekada K., Kitaura Y., Nakata H., Hiraiwa N., Mochida K., Ijuin M., Kadota M., Murakami A., Ogura A., Abe K., Moriwaki K., Obata Y. The mouse resources at the RIKEN BioResource center. Exp. Anim. 2009;58:85-96. DOI: http://doi.org/10.1538/expanim.58.85

30. Ziebe S., Loft A., Povlsen B.B., Erb K., Agerholm I., Aasted M., Gabrielsen A., Hnida C., Zobel D.P., Munding B., Bendz S.H., Robertson S.A. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil. Steril. 2013;99: 1600-1609. DOI: 10.1016/j.fertnstert.2012.12.043

This entry was posted in Tom 19-4. Bookmark the permalink.