Expression profiles of long and short RNA s in the cytoplasm and nuclei of growing chicken (Gallus gallus domesticus) oocytes. A. V. Krasikova, A. V. Fedorov

Abstract:

Maternal RNAs accumulated during oocyte maturation are required not only for zygote formation but also for supporting the first embryonic cell divisions until embryo genome activation. Essential stages of transcriptome analysis include adaptation of RNA extraction procedures and characterization of the RNA expression profile. Ovaries of domestic birds represent an adequate model for exploration of RNA accumulation during oogenesis. In the present study, we optimized methods of RNA extraction from chicken (Gallus gallus domesticus) oocyte cytoplasm and nucleoplasm and characterized changes in profiles of long and short RNAs during oocyte growth. Cytoplasmic RNA fractions contained 28S and 18S ribosomal RNAs (rRNAs), small RNAs, and long RNAs heterogeneous in size. The profiles of total RNA from growing oocyte nuclei were dominated by low molecular weight RNAs corresponding in size to transport RNAs, small nuclear RNAs, and short regulatory RNAs. Importantly, oocyte nuclei from chicken egglaying females demonstrated trace amounts or absence of 28S and 18S rRNA, which was due to inactivation of the only nucleolar organizer. Three groups of short RNAs differing in size (from 20 to 40 nucleotides) were recognized in chicken oocytes. They might correspond to short regulatory RNA classes. Furthermore, we demonstrated that short RNAs were accumulated in the cytoplasm during oocyte growth. We suggest that short RNAs accumulated in avian oocyte cytoplasm are involved in the regulation of genome functions at early embryogenesis stages.

About The Authors:

A. V. Krasikova. Saint-Petersburg State University, Saint-Petersburg, Russia, Russian Federation

A. V. Fedorov. Saint-Petersburg State University, Saint-Petersburg, Russia Almazov Federal Medical Research Centre, Saint-Petersburg, Russia, Russian Federation

References:

1. Anderson D.M., Smith L.D. Patterns of synthesis and accumulation of heterogeneous RNA in lampbrush stage oocytes of Xenopus laevis (Daudin). Dev Biol. 1978;67(2):274-285.

2. Aravin A.A., Hannon G.J. Small RNA silencing pathways in germ and stem cells. Cold Spring Harb. Symp. Quant. Biol. 2008;73: 283-290.

3. Cogburn L.A., Porter T.E., Duclos M.J., Simon J., Burgess S.C., Zhu J.J., Cheng H.H., Dodgson J.B., Burnside J. Functional genomics of the chicken — a model organism. Poult Sci. 2007;86(10): 2059-2094.

4. Deryusheva S., Krasikova A., Kulikova T., Gaginskaya E. Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma. 2007;116(6):519-530.

5. Elis S., Batellier F., Couty I., Balzergue S., Martin-Magniette M.L., Monget P., Blesbois E., Govoroun M.S. Search for the genes involved in oocyte maturation and early embryo development in the hen. BMC Genomics. 2008;9:110.

6. Fair T., Carter F., Park S., Evans A.C., Lonergan P. Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology. 2007;68:S91-S97.

7. Froman D.P., Kirby J.D., Rhoads D.D. An expressed sequence tag analysis of the chicken reproductive tract transcriptome. Poult. Sci. 2006;85(8):1438-1441.

8. Gaginskaia E.R., Chin S.H. Peculiarities of oogenesis in the chicken. II Follicular period in oocyte development. Ontogenes. 1980;11:13-221.

9. Gardner E.J., Nizami Z.F., Talbot C.C. Jr., Gall J.G. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev. 2012;26(22):2550-2559.

10. Gilbert A.B., Perry M.M., Waddington D., Hardie M.A. Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (Gallus domesticus). J. Reprod Fertil. 1983;69:221-227.

11. Greenfield M.L. The oocyte of the domestic chicken shortly after hatching, studied by electron microscopy. J. Embryol. Exp. Morphol. 1966;15:297-316.

12. Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010;16(10):715-725.

13. Hutchison N. Lampbrush chromosomes of the chicken, Gallus domesticus. J. Cell Biol. 1987;105:1493-1500.

14. Kawano M., Kawaji H., Grandjean V., Kiani J., Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One. 2012;7(9):e44542.

15. Krasikova A., Deryusheva S., Galkina S., Kurganova A., Evteev A., Gaginskaya E. On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res. 2006;14(7):777-789.

16. Krasikova A., Khodyuchenko T., Maslova A., Vasilevskaya E. Threedimensional organisation of RNA-processing machinery in avian growing oocyte nucleus. Chromosome Res. 2012;20(8):979-994.

17. Lau N.C., Ohsumi T., Borowsky M., Kingston R.E., Blower M.D. Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J. 2009;28(19):2945-2958.

18. Lee S.H., Eldi P., Cho S.Y., Rangasamy D. Control of chicken CR1 retrotransposons is independent of Dicer-mediated RNA interference pathway. BMC Biol. 2009;7:53.

19. Malone C.D., Brennecke J., Dus M., Stark A., McCombie W.R., Sachidanandam R., Hannon G.J. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009;137(3):522-535.

20. Nie H., Crooijmans R.P., Bastiaansen J.W., Megens H.J., Groenen M.A. Regional regulation of transcription in the chicken genome. BMC Genomics. 2010;11:28.

21. Rengaraj D., Lee S.I., Park T.S., Lee H.J., Kim Y.M., Sohn Y.A., Jung M., Noh S.J., Jung H., Han J.Y. Small non-coding RNA profiling and the role of piRNA pathway genes in the protection of chicken primordial germ cells. BMC Genomics. 2014;15:757.

22. Rodionov A.V., Micro versus Macro: a review of structure and functions of avian micro- and macrochromosomes. Genetika (Moscow) — Genetics (Moscow), 1996;32(5):597-608.

23. Shao P., Liao J.Y., Guan D.G., Yang J.H., Zheng L.L., Jing Q., Zhou H., Qu L.H. Drastic expression change of transposon-derived piRNAlike RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation. RNA Biol. 2012;9(2):212-227.

24. Simeoni I., Gilchrist M.J., Garrett N., Armisen J., Gurdon J.B. Widespread transcription in an amphibian oocyte relates to its reprogramming activity on transplanted somatic nuclei. Stem Cells Dev. 2012;21(2):181-190.

25. Watanabe T., Takeda A., Tsukiyama T., Mise K., Okuno T., Sasaki H., Minami N., Imai H. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 2006;20(13):1732-1743.

26. Yang H., Wang X., Liu X., Liu X., Li L., Hu X., Li N. Cloning and expression analysis of piRNA-like RNAs: adult testis-specific small RNAs in chicken. Mol. Cell Biochem. 2012;360(1/2):347-352.

27. Zagris N., Kalantzis K., Guialis A. Activation of embryonic genome in chick. Zygote. 1998;6(3):227-231.

28. Zhang Y., Li J., Chen R., Dai A., Luan D., Ma T., Hua D., Chen G., Chang G. Cloning, characterization and widespread expression analysis of testicular piRNA-like chicken RNAs. Mol. Biol. Rep. 2013;40(4):2799-2807.

This entry was posted in Tom 19-3. Bookmark the permalink.