Application of reproductive technologies to the improvement of dairy cattle genomic selection. N. S. Yudin, K. I. Lukyanov, M. I. Voevoda, N. A. Kolchanov


Genomic selection is a direction of breeding in which the value of an animal is predicted from DNA markers evenly covering the entire genome. This review summarizes information on modern trends in the genomic selection of dairy cattle and on application of reproductive technologies to the improvement of breeding process. The main trends in the development of genomic selection include improvement of the accuracy of breeding value estimations by combination of reference populations; use genotyping of cows in breeding programs; imputation of genotypes for absent SNPs with low marker density microarrays, and prediction of animal genotypes from the genotypes of relatives. Genomic selection can be even more profitable in combination with up-to-date reproductive biotechnologies: semen sexing, multiple ovulation and embryo transfer, ovum pick-up followed by in vitro fertilization, embryo genotyping, cloning of best breeders, etc. In programs of dairy cattle genomic selection, biotechnological procedures with gametes and embryos allow improvement of a variety of parameters determining breeding efficacy: selection intensity, accurate breeding value assessment, and generation interval. Successful methods for embryo genotyping for numerous markers after biopsy at the morula or blastocyst stage are based on whole genome amplification of embryo DNA. Eventually, these achievements will provide grounds for new approaches to the reduction of generation interval, selection of elite cows, reduction of inbreeding rate, etc.

About The Authors:

N. S. Yudin. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Institute of Internal and Preventive Medicine, SB RAMS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation

K. I. Lukyanov. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation

M. I. Voevoda. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Institute of Internal and Preventive Medicine, SB RAMS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia, Russian Federation

N. A. Kolchanov. Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, Russian Federation


1. Lund M.S., Roos A.P., Vries A.G., Druet T., Ducrocq V., Fritz S., Guillaume F., Guldbrandtsen B., Liu Z., Reents R., Schrooten C., See

2. Berry D.P., McClure M.C., Mullen M.P. Within- and across-breed imputation of high-density genotypes in dairy and beef cattle from medium- and low-density genotypes. J. Anim. Breed. Genet. 2014;131(3):165-172. DOI: 10.1111/jbg.12067

3. Boichard D., Chung H., Dassanneville R., David X., Eggen A., Fritz S., Gietzen K.J., Hayes B.J., Lawley C.T., Sonstegard T.S., Van Tassell C.P.,VanRaden P.M., Viaud-Martinez K.A., Wiggans G.R. Design of a bovine low-density SNP array optimized for imputation. PLoS One. 2012;7:e34130. DOI:10.1371/JOURNAL.PONE.0034130

4. Boichard D., Ducrocq V., Fritz S. Sustainable dairy cattle selection in the genomic era J. Anim. Breed Genet. 2015;132(2):135-143. DOI: 10.1111/jbg.12150

5. Bouquet A., Juga J. Integrating genomic selection into dairy cattle breeding programmes: a review. Animal. 2013;7(5):705-713. DOI: 10.1017/S1751731112002248

6. Bouquet A., Sorensen A.C., Juga J. Genomic selection strategies to optimize the use of multiple ovulation and embryo transfer schemes in dairy cattle breeding programs. Livestock Sci. 2015;174:18-25. DOI:10.1016/j.livsci.2015.01.014

7. Bouwman A.C., Hickey J.M., Calus M.P., Veerkamp R.F. Imputation of non-genotyped individuals based on genotyped relatives: assessing the imputation accuracy of a real case scenario in dairy cattle. Genet. Sel. Evol. 2014;46:6. DOI: 10.1186/1297-9686-46-6

8. Calus M.P., de Haas Y., Veerkamp R.F. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies. J. Dairy Sci. 2013;96(10):6703-6715. DOI: 10.3168/jds.2012-6013

9. Carneiro M.C., Takeuchi P.L., Araujo A., Lobo R.B., Elias F.P., Vila R.A., Miranda-Furtado C.L., Ramos E.S. Sexing single bovine blastomeres using TSPY gene amplification. Genet. Mol. Res. 2011;10(4):3937-3941. DOI: 10.4238/2011

10. Cenariu M., Pall E., Cernea C., Groza I. Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability. J. Biomed. Biotechnol. 2012;2012:541384. DOI: 10.1155/2012/541384

11. Clark S.A., Kinghorn B.P., Hickey J.M., van der Werf J.H. The effect of genomic information on optimal contribution selection in livestock breeding programs. Genet. Sel. Evol. 2013;45:44. DOI: 10.1186/1297-9686-45-44

12. Ertl J., Edel C., Emmerling R., Pausch H., Fries R., Götz K.U. On the limited increase in validation reliability using high-density genotypes in genomic best linear unbiased prediction: observations from Fleckvieh cattle. J. Dairy Sci. 2014;979(1):487-496. DOI: 10.3168/jds.2013-6855

13. Falconer D.S., Mackay T.F.C. Introduction to Quantitative Genetics. Burnt Mill, England : Longman, 1996.

14. Fisher P.J., Hyndman D.L., Bixley M.J., Oback F.C., Popovic L., McGowan L.T., Berg M.C., Wells D.N. Brief communication: potential for genomic selection of bovine embryos. Proc. N.Z. Soc. Anim. Prod. 2012;72:156-158.

15. Galli C., Duchi R., Colleoni S., Lagutina I., Lazzari G. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology. 2014;Jan. 1;81(1):138-151. DOI: 10.1016/j.theriogenology.2013.09.008

16. Gamarra G., Le Bourhis D., Gall L., Laffont L., Ruffini S., Humblot P. Attempts to culture biopsied cells from in vitro bovine blastocysts for genotyping. Reprod. Fertil. Dev. 2010;22:238-239. DOI:10.1071/RDV22N1AB160

17. Georges M., Massey J.M. Velogenetics, or the synergistic use of marker assisted selection and germ-line manipulation. Theriogenology. 1991;35(1):151-159. DOI: 10.1016/0093-691X(91)90154-6

18. Haskell M.J., Simm G., Turner S.P. Genetic selection for temperament traits in dairy and beef cattle. Front. Genet. 2014;5:368. DOI: 10.3389/fgene.2014.00368

19. Hasler J.F. Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology. 2014;81(1):152-169. DOI:10.1016/j.theriogenology.2013.09.010

20. Hoze C., Fouilloux M.N., Venot E., Guillaume F., Dassonneville R., Fritz S., Ducrocq V., Phocas F., Boichard D., Croiseau P. High-density marker imputation accuracy in sixteen French cattle breeds. Genet .Sel. Evol. 2013;45: 33. DOI: 10.1186/1297-9686-45-33

21. Hoze C., Fritz S., Phocas F., Boichard D., Ducrocq V., Croiseau P. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. J. Dairy Sci. 2014;97(6):3918-3929. DOI: 10.3168/jds.2013-7761

22. Humblot P., Le Bourhis D., Fritz S., Colleau J.J., Gonzalez C., Guyader Joly C., Malafosse A., Heyman Y., Amigues Y., Tissier M., Ponsart C. Reproductive technologies and genomic selection in cattle. Vet. Med. Int. 2010;2010:1-8. DOI: 10.4061/2010/192787

23. Illumina. Bovine HD Genotyping BeadChip. 2015a. available at

24. Illumina. Bovine SNP50 Genotyping BeadChip. 2015b. available athttp://

25. Illumina. Bovine LD. 2015c. available at

26. Jimenez-Montero J.A., Gianola D., Weigel K., Alenda R., Gonzalez-Recio O. Assets of imputation to ultra-high density for productive and functional traits. J. Dairy Sci. 2013;96(9):6047-6058. DOI: 10.3168/jds.2013-6793

27. Jonas E., de Koning D.J. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Front Genet. 2015;Feb. 20;6:49. DOI: 10.3389/fgene.2015.00049

28. Kasinathan P., Wei H., Xiang T., Molina J.A., Metzger J., Broek D., Kasinathan S., Faber D.C., Allan M.F. Acceleration of genetic gain in cattle by reduction of generation interval. Sci. Rep. 2015;5:8674. DOI:10.1038/srep08674

29. Larmer S.G., Sargolzaei M., Schenkel F.S. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. J. Dairy Sci. 2014;97(5):3128-3141. DOI:10.3168/jds.2013-6826

30. Lauri A., Lazzari G., Galli C., Lagutina I., Genzini E., Braga F., Mariani P., Williams J.L. Assessment of MDA efficiency for genotyping using cloned embryo biopsies. Genomics. 2013;101(1):24-29. DOI:10.1016/j.ygeno.2012.09.002

31. Le Bourhis D., Mullaart E., Humblot P., Coppieters W., Ponsart C. Bovine embryo genotyping using a 50k SNP chip. Reprod. Fertil. Dev. 2010;23:197. DOI: 10.1071/RDV23N1AB193

32. Le Bourhis D., Mullaart E., Schrooten C., Fritz S., Coppieters W., Ponsart C. Breeding values concordance between embryos and corresponding calves. Reprod. Fertil. Dev. 2011;24:180. DOI:10.1071/RDV24N1AB135

33. Lund M.S., Roos A.P., Vries A.G., Druet T., Ducrocq V., Fritz S., Guillaume F., Guldbrandtsen B., Liu Z., Reents R., Schrooten C., See

This entry was posted in Tom 19-3. Bookmark the permalink.